31 research outputs found

    The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos

    Get PDF
    Abstract The enpp ectonucleotidases regulate lipidic and purinergic signalling pathways by controlling the extracellular concentrations of purines and bioactive lipids. Although both pathways are key regulators of kidney physiology and linked to human renal pathologies, their roles during nephrogenesis remain poorly understood. We previously showed that the pronephros was a major site of enpp expression and now demonstrate an unsuspected role for the conserved vertebrate enpp4 protein during kidney formation in Xenopus . Enpp4 over-expression results in ectopic renal tissues and, on rare occasion, complete mini-duplication of the entire kidney. Enpp4 is required and sufficient for pronephric markers expression and regulates the expression of RA, Notch and Wnt pathway members. Enpp4 is a membrane protein that binds, without hydrolyzing, phosphatidylserine and its effects are mediated by the receptor s1pr5, although not via the generation of S1P. Finally, we propose a novel and non-catalytic mechanism by which lipidic signalling regulates nephrogenesis

    Methods Mol Biol

    No full text
    Xenopus embryos are one of the most used animal models in developmental biology and are well suited for apprehending functions of signaling pathways during embryogenesis. To do so, it is necessary to be able to detect expression pattern of the key genes of these signaling pathways. Here we describe the whole-mount in situ hybridization technique to investigate the expression pattern of ectonucleotidases and purinergic receptors during embryonic development. © Springer Science+Business Media, LLC, part of Springer Nature 2020

    The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis

    No full text
    Sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are endogenous bioactive lipids which mediate a variety of biological cell responses such as cell proliferation, migration, differentiation and apoptosis. Their actions are mediated by binding to the G-protein-coupled endothelial differentiation gene (Edg) receptor subfamily, referred to as S1P1-5 and LPA1-5, and regulate a variety of signalling pathways involved in numerous physiological processes and pathological conditions. Their importance during embryogenesis has been demonstrated by the generation of knock-out mice and specific roles have been assigned to these receptors. However, potential functional redundancy and the lethality of some mutants have complicated functional analysis in these models. Here we report the cloning of the S1P and LPA receptors in Xenopus laevis and tropicalis. Phylogenetic analyses demonstrate the high level of conservation of these receptors between amphibian and other vertebrate species. We have conducted a comparative expression analysis of these receptors during development and in the adult frog, by both RT-PCR and whole mount in situ hybridisation. In particular, we show that S1P1, 2 and 5 display distinct embryonic specific expression patterns, suggesting potentially different developmental roles for these receptors, and therefore for their ligands, during amphibian embryogenesis

    A functional screen for genes involved in Xenopus pronephros development

    No full text
    In Xenopus, the pronephros is the functional larval kidney and consists of two identifiable components; the glomus, the pronephric tubules, which can be divided into four separate segments, based on marker gene expression. The simplicity of this organ, coupled with the fact that it displays the same basic organization and function as more complex mesonephros and metanephros, makes this an attractive model to study vertebrate kidney formation. In this study, we have performed a functional screen specifically to identify genes involved in pronephros development in Xenopus. Gain-of-function screens are performed by injecting mRNA pools made from a non-redundant X. tropicalis full-length plasmid cDNA library into X. laevis eggs, followed by sib-selection to identify the single clone that caused abnormal phenotypes in the pronephros. Out of 768 egg and gastrula stage cDNA clones, 31 genes, approximately 4% of the screened clones, affected pronephric marker expression examined by whole mount in situ hybridization or antibody staining. Most of the positive clones had clear expression patterns in pronephros and predicted/established functions highly likely to be involved in developmental processes. In order to carry out a more detailed study, we selected Sox7, Cpeb3, P53csv, Mecr and Dnajc15, which had highly specific expression patterns in the pronephric region. The over-expression of these five selected clones indicated that they caused pronephric abnormalities with different temporal and spatial effects. These results suggest that our strategy to identify novel genes involved in pronephros development was highly successful, and that this strategy is effective for the identification of novel genes involved in late developmental events. (c) 2008 Elsevier Ireland Ltd. All rights reserved

    Ectophosphodiesterase/nucleotide phosphohydrolase (Enpp) nucleotidases: cloning, conservation and developmental restriction

    No full text
    Ectonucleotidase proteins occupy a central role in purine signalling regulation by sequentially hydrolysing ATP to ADP and to adenosine. The ENPP (or PDNP) gene family, which encodes ectophosphodiesterase/nucleotide phosphohydrolases, is a subfamily of these enzymes, which consists of 7 members in mammals. These proteins catalyse the generation of bioactive lipids, placing the ENPP enzymes as key regulators of major physiological signalling pathways and also important players in several pathological conditions. Here we report the cloning of all the members, except enpp5, of the enpp family in Xenopus laevis and tropicalis. Phylogenetic analyses demonstrate the high level of conservation of these proteins between amphibian and other vertebrate species. During development and in the adult frog, each gene displays a distinct specific expression pattern, suggesting potentially different functions for these proteins during amphibian embryogenesis. This is the first complete developmental analysis of gene expression of this gene family in vertebrates

    A Streptococcus pyogenes DegV protein regulates the membrane lipid content and limits the formation of extracellular vesicles.

    No full text
    Membranes contain lipids that are composed of fatty acids (FA) and a polar head. Membrane homeostasis is crucial for optimal bacterial growth and interaction with the environment. Bacteria synthesize their FAs via the FASII pathway. Gram-positive bacteria can incorporate exogenous FAs which need to be phosphorylated to become substrate of the lipid biosynthetic pathway. In many species including staphylococci, streptococci and enterococci, this phosphorylation is carried out by the Fak complex, which is composed of two subunits, FakA and FakB. FakA is the kinase. FakB proteins are members of the DegV family, proteins known to bind FAs. Two or three FakB types have been identified depending on the bacterial species and characterized by their affinity for saturated and/or unsaturated FAs. Some species such as Streptococcus pyogenes, which causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections, possess an uncharacterized additional DegV protein. We identify here this DegV member as a fourth FakB protein, named FakB4. The fakB4 gene is co-regulated with FASII genes suggesting an interaction with endogenous fatty acids. fakB4 deletion has no impact on membrane phospholipid composition nor on the percentage of other major lipids. However, the fakB4 mutant strain produced more lipids and more extracellular membrane vesicles than the wild-type strain. This suggests that FakB4 is involved in endogenous FA binding and controls FA storage or catabolism resulting in a limitation of extracellular FA release via membrane vesicles

    The lmx1b gene is pivotal in glomus development in Xenopus laevis

    Get PDF
    We have previously shown that lmx1b, a LIM homeodomain protein, is expressed in the pronephric glomus. We now show temporal and spatial expression patterns of lmx1b and its potential binding partners in both dissected pronephric anlagen and in individual dissected components of stage 42 pronephroi. Morpholino oligonucleotide knock-down of lmx1b establishes a role for lmx1b in the development of the pronephric components. Depletion of lmxlb results in the formation of a glomus with reduced size. Pronephric tubules were also shown to be reduced in structure and/or coiling whereas more distal tubule structure was unaffected. Over-expression of lmx1b mRNA resulted in no significant phenotype. Given that lmx1b protein is known to function as a heterodimer, we have over-expressed lmx1b mRNA alone or in combination with potential interacting molecules and analysed the effects on kidney structures. Phenotypes observed by overexpression of lim1 and ldb1 are partially rescued by co-injection with lmxlb mRNA. Animal cap experiments confirm that co-injection of lmx1b with potential binding partners can up-regulate pronephric molecular markets suggesting that lmx1b lies upstream of wt1 in the gene network controlling glomus differentiation. This places lmx1b in a genetic hierarchy involved in pronephros development and suggests that it is the balance in levels of binding partners together with restricted expression domains of lmx1b and lim1 which influences differentiation into glomus or tubule derivatives in vivo. (c) 2008 Elsevier Inc. All rights reserved

    Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos

    No full text
    International audienceInsufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH41 1 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or Idlr-!-mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells-including pathological cells-or organs that express the LDLR
    corecore