69 research outputs found

    The influence of electron collisions on non-LTE Li line formation in stellar atmospheres

    Full text link
    The influence of the uncertainties in the rate coefficient data for electron-impact excitation and ionization on non-LTE Li line formation in cool stellar atmospheres is investigated. We examine the electron collision data used in previous non-LTE calculations and compare them to recent calculations that use convergent close-coupling (CCC) techniques and to our own calculations using the R-matrix with pseudostates (RMPS) method. We find excellent agreement between rate coefficients from the CCC and RMPS calculations, and reasonable agreement between these data and the semi-empirical data used in non-LTE calculations up to now. The results of non-LTE calculations using the old and new data sets are compared and only small differences found: about 0.01 dex (~ 2%) or less in the abundance corrections. We therefore conclude that the influence on non-LTE calculations of uncertainties in the electron collision data is negligible. Indeed, together with the collision data for the charge exchange process Li(3s) + H Li^+ + H^- now available, and barring the existence of an unknown important collisional process, the collisional data in general is not a source of significant uncertainty in non-LTE Li line formation calculations.Comment: 8 pages, accepted by Astronomy and Astrophysics; Replaced with minor corrections following proof

    High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    Get PDF
    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set that allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca II K 3933A line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan-MIKE high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. 41 stars have [Fe/H] <= -3.0. Nine have [Fe/H] <= -3.5, with three at [Fe/H] ~ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] [X/Fe values appears to be "Fe-enhanced," while another star has an extremely large [Sr/Ba] ratio: >2. Only one other star is known to have a comparable value. Seven stars are "CEMP-no" stars ([C/Fe] > 0.7, [Ba/Fe] < 0). 21 stars exhibit mild r-process element enhancements (0.3 <=[Eu/Fe] < 1.0), while four stars have [Eu/Fe] >= 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future.Comment: Minor corrections to text, missing data added to Tables 3 and 4; updated to match published version. Complete tables included in sourc

    High precision abundances of the old solar twin HIP 102152: Insights on Li depletion from the oldest sun

    Get PDF
    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex (≲1%), using ultra high-resolution (R = 110,0

    The K2-HERMES Survey: Age and Metallicity of the Thick Disc

    Get PDF
    Asteroseismology is a promising tool to study Galactic structure and evolution because it can probe the ages of stars. Earlier attempts comparing seismic data from the {\it Kepler} satellite with predictions from Galaxy models found that the models predicted more low-mass stars compared to the observed distribution of masses. It was unclear if the mismatch was due to inaccuracies in the Galactic models, or the unknown aspects of the selection function of the stars. Using new data from the K2 mission, which has a well-defined selection function, we find that an old metal-poor thick disc, as used in previous Galactic models, is incompatible with the asteroseismic information. We show that spectroscopic measurements of [Fe/H] and [α\alpha/Fe] elemental abundances from the GALAH survey indicate a mean metallicity of log(Z/Z)=0.16\log (Z/Z_{\odot})=-0.16 for the thick disc. Here ZZ is the effective solar-scaled metallicity, which is a function of [Fe/H] and [α\alpha/Fe]. With the revised disc metallicities, for the first time, the theoretically predicted distribution of seismic masses show excellent agreement with the observed distribution of masses. This provides an indirect verification of the asteroseismic mass scaling relation is good to within five percent. Using an importance-sampling framework that takes the selection function into account, we fit a population synthesis model of the Galaxy to the observed seismic and spectroscopic data. Assuming the asteroseismic scaling relations are correct, we estimate the mean age of the thick disc to be about 10 Gyr, in agreement with the traditional idea of an old α\alpha-enhanced thick disc.Comment: 21 pages, submitted to MNRA

    Coping strategies, stress, physical activity and sleep in patients with unexplained chest pain

    Get PDF
    BACKGROUND: The number of patients suffering from unexplained chest pain (UCP) is increasing. Intervention programmes are needed to reduce the chest pain and suffering experienced by these patients and effective preventive strategies are also required to reduce the incidence of these symptoms. The aim of this study was to describe general coping strategies in patients with UCP and examine the relationships between coping strategies, negative life events, sleep problems, physical activity, stress and chest pain intensity. METHOD: The sample consisted of 179 patients younger than 70 years of age, who were evaluated for chest pain at the emergency department daytime Monday through Friday and judged by a physician to have no organic cause for their chest pain. The study had a cross-sectional design. RESULTS: Emotive coping was related to chest pain intensity (r = 0.17, p = 0.02). Women used emotive coping to a greater extent than did men (p = 0.05). In the multivariate analysis was shown that physical activity decreased emotive coping (OR 0.13, p < 0.0001) while sex, age, sleep, mental strain at work and negative life events increased emotive coping. Twenty-seven percent of the patients had sleep problems 8 to14 nights per month or more. Permanent stress at work during the last year was reported by 18% of the patients and stress at home by 7%. Thirty-five percent of the patients were worried often or almost all the time about being rushed at work and 23% were worried about being unable to keep up with their workload. Concerning total life events, 20% reported that a close relative had had a serious illness and 27% had reasons to be worried about a close relative. CONCLUSION: Our results indicated that patients with more intense UCP more often apply emotive coping in dealing with their pain. Given that emotive coping was also found to be related to disturbed sleep, negative life events, mental strain at work and physical activity, it may be of value to help these patients to both verbalise their emotions and to become cognizant of the influence of such factors on their pain experience

    The GALAH survey: A new constraint on cosmological lithium and Galactic lithium evolution from warm dwarf stars

    Get PDF
    Lithium depletion and enrichment in the cosmos is not yet well understood. To help tighten constraints on stellar and Galactic evolution models, we present the largest high-resolution analysis of Li abundances A(Li) to date, with results for over 100 000 GALAH (Galactic Archeology with HERMES) field stars spanning effective temperatures 5900 K Teff 7000 K and metallicities −3 [Fe/H] +0.5. We separated these stars into two groups, on the warm and cool sides of the so-called Li dip, a localized region of the Kiel diagram wherein lithium is severely depleted. We discovered that stars in these two groups show similar trends in the A(Li)–[Fe/H] plane, but with a roughly constant offset in A(Li) of 0.4 dex, the warm group having higher Li abundances. At [Fe/H] −0.5, a significant increase in Li abundance with increasing metallicity is evident in both groups, signalling the onset of significant Galactic production. At lower metallicity, stars in the cool group sit on the Spite plateau, showing a reduced lithium of around 0.4 dex relative to the primordial value predicted from big bang nucleosynthesis (BBN). However, stars in the warm group between [Fe/H] = −1.0 and −0.5 form an elevated plateau that is largely consistent with the BBN prediction. This may indicate that these stars in fact preserve the primordial Li produced in the early Universe.XDG, KL, AMA, and SB acknowledge funds from the Alexander von Humboldt Foundation in the framework of the Sofja Kovalevskaja Award endowed by the Federal Ministry of Education and Research. KL also acknowledges funds from the Swedish Research Council (VR 2015-004153) and Marie Skłodowska Curie Actions (cofund project INCA 600398), and AMA also acknowledges support from the Swedish Research Council (VR 2016-03765), and the project grant ‘The New Milky Way’ (KAW 2013.0052) from the Knut and Alice Wallenberg Foundation. TZ acknowledges financial support of the Slovenian Research Agency (research core funding no. P1-0188). SLM and JDS acknowledge the support of the Australian Research Council through Discovery Project grant DP180101791. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project no. CE170100013. YST is grateful to be supported by the NASA Hubble Fellowship grant HST-HF2-51425 awarded by the Space Telescope Science Institute. SWC acknowledges federal funding from the Australian Research Council through the Future Fellowship grant entitled ‘Where are the Convective Boundaries in Stars?’ (FT160100046). GT acknowledges support by the project grant ‘The New Milky Way’ from the Knut and Alice Wallenberg Foundation and by the grant 2016-03412 from the Swedish Research Council

    The GALAH survey: Milky Way disc metallicity and alpha-abundance trends in combined APOGEE-GALAH catalogues

    Full text link
    GALAH and APOGEE are two high resolution multi object spectroscopic surveys that provide fundamental stellar parameters and multiple elemental abundance estimates for >> 400,000 stars in the Milky Way. They are complimentary in both sky coverage and wavelength regime. Thus combining the two surveys will provide us a large sample to investigate the disc metallicity and alpha abundance trends. We use the Cannon data-driven approach selecting training sets from among \sim20,000 stars in common for the two surveys to predict the GALAH scaled stellar parameters from APOGEE spectra as well as APOGEE scaled stellar parameters from GALAH spectra. We provide two combined catalogues with GALAH scaled and APOGEE scaled stellar parameters each having \sim500,000 stars after quality cuts. With \sim470,000 stars that are common in both these catalogues, we compare the GALAH scaled and APOGEE scaled metallicity distribution functions (MDF), radial and vertical metallicity gradients as well as the variation of [α\alpha/Fe] vs [Fe/H] trends along and away from the Galactic mid plane. We find mean metallicities of APOGEE scaled sample to be higher compared to that for the GALAH scaled sample. We find similar [α\alpha/Fe] vs [Fe/H] trends using both samples consistent with previous observational as well as simulation based studies. Radial and vertical metallicity gradients derived using the two survey scaled samples are consistent except in the inner and outer Galactocentric radius bins. Our gradient estimates in the solar neighborhood are also consistent with previous studies and are backed by larger sample size compared to previous works.Comment: 21 pages, 19 figures, submitted to MNRA

    The GALAH survey: Co-orbiting stars and chemical tagging

    Full text link
    We present a study using the second data release of the GALAH survey of stellar parameters and elemental abundances of 15 pairs of stars identified by Oh et al 2017. They identified these pairs as potentially co-moving pairs using proper motions and parallaxes from Gaia DR1. We find that 11 very wide (>1.7 pc) pairs of stars do in fact have similar Galactic orbits, while a further four claimed co-moving pairs are not truly co-orbiting. Eight of the 11 co-orbiting pairs have reliable stellar parameters and abundances, and we find that three of those are quite similar in their abundance patterns, while five have significant [Fe/H] differences. For the latter, this indicates that they could be co-orbiting because of the general dynamical coldness of the thin disc, or perhaps resonances induced by the Galaxy, rather than a shared formation site. Stars such as these, wide binaries, debris of past star formation episodes, and coincidental co-orbiters, are crucial for exploring the limits of chemical tagging in the Milky Way.Comment: 14 pages, 9 figures, submitted to MNRAS. Updated for Gaia DR2 value

    The GALAH survey: Co-orbiting stars and chemical tagging

    Get PDF
    We present a study using the second data release of the GALAH survey of stellar parameters and elemental abundances of 15 pairs of stars identified by Oh et al 2017. They identified these pairs as potentially co-moving pairs using proper motions and parallaxes from Gaia DR1. We find that 11 very wide (>1.7 pc) pairs of stars do in fact have similar Galactic orbits, while a further four claimed co-moving pairs are not truly co-orbiting. Eight of the 11 co-orbiting pairs have reliable stellar parameters and abundances, and we find that three of those are quite similar in their abundance patterns, while five have significant [Fe/H] differences. For the latter, this indicates that they could be co-orbiting because of the general dynamical coldness of the thin disc, or perhaps resonances induced by the Galaxy, rather than a shared formation site. Stars such as these, wide binaries, debris of past star formation episodes, and coincidental co-orbiters, are crucial for exploring the limits of chemical tagging in the Milky Way.Comment: 14 pages, 9 figures, submitted to MNRAS. Updated for Gaia DR2 value
    corecore