18 research outputs found

    Transcriptional Profiles in Olfactory Pathway-Associated Brain Regions of African Green Monkeys: Associations With Age and Alzheimer’s Disease Neuropathology

    Get PDF
    Introduction: Olfactory impairment in older individuals is associated with an increased risk of Alzheimer\u27s disease (AD). Characterization of age versus neuropathology-associated changes in the brain olfactory pathway may elucidate processes underlying early AD pathogenesis. Here, we report age versus AD neuropathology-associated differential transcription in four brain regions in the olfactory pathway of 10 female African green monkeys (vervet, Chlorocebus aethiops sabaeus), a well-described model of early AD-like neuropathology. Methods: Transcriptional profiles were determined by microarray in the olfactory bulb (OB), piriform cortex (PC), temporal lobe white matter (WM), and inferior temporal cortex (ITC). Amyloid beta (Aβ) plaque load in parietal and temporal cortex was determined by immunohistochemistry, and concentrations of Aβ42, Aβ40, and norepinephrine in ITC were determined by enzyme-linked immuosorbent assay (ELISA). Transcriptional profiles were compared between middle-aged and old animals, and associations with AD-relevant neuropathological measures were determined. Results: Transcriptional profiles varied by brain region and age group. Expression levels of TRO and RNU4-1 were significantly lower in all four regions in the older group. An additional 29 genes were differentially expressed by age in three of four regions. Analyses of a combined expression data set of all four regions identified 77 differentially expressed genes (DEGs) by age group. Among these DEGs, older subjects had elevated levels of CTSB , EBAG9, LAMTOR3, and MRPL17, and lower levels of COMMD10 and TYW1B. A subset of these DEGs was associated with neuropathology biomarkers. Notably, CTSB was positively correlated with Aβ plaque counts, Aβ42:Aβ40 ratios, and norepinephrine levels in all brain regions. Discussion: These data demonstrate age differences in gene expression in olfaction-associated brain regions. Biological processes exhibiting age-related enrichment included the regulation of cell death, vascular function, mitochondrial function, and proteostasis. A subset of DEGs was specifically associated with AD phenotypes. These may represent promising targets for future mechanistic investigations and perhaps therapeutic intervention

    The Post-Synaptic Density of Human Postmortem Brain Tissues: An Experimental Study Paradigm for Neuropsychiatric Illnesses

    Get PDF
    Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1) and the pH based differential extraction of synaptic membranes (Methods 2 and 3). All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM) and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined

    Altered G Protein Coupling in Olfactory Neuroepithelial Cells From Patients With Schizophrenia

    Full text link
    Raking view of large walled museum complex from street; Designed by Ieoh Ming Pei in association with Pei Partnership Architects. Pei's family came from Suzhou originally. The museum has over 15,000 objects (including crafts and Neolithic archeological finds), 70,000 books and documents, and over 20,000 rubbings of stone inscriptions. The collection of paintings and calligraphy includes works of masters from the Song to Ming and Qing dynasties. The museum includes 5,000 m2 exhibit space, a 200-seat auditorium, library, art storage and administrative areas. It adjoins the landmarked Zhong Wang Fu, a complex of 19th-century historical structures, and the Garden of the Humble Administrator. The museum design is based on Suzhou's traditional architecture, with its whitewashed plaster walls, dark grey clay tile roofs and intricate courtyard and garden architecture. These elements have been reinterpreted and synthesized in a contemporary manner (substituting steel and stone). There are three courtyard gardens in the complex. Source: Pei Partnership [firm website]; http://www.peipartnership.com/ (accessed 6/18/2014

    Transcriptional profiles in olfactory pathway–associated brain regions of African green monkeys: Associations with age and Alzheimer's disease neuropathology

    Get PDF
    Abstract Introduction Olfactory impairment in older individuals is associated with an increased risk of Alzheimer's disease (AD). Characterization of age versus neuropathology‐associated changes in the brain olfactory pathway may elucidate processes underlying early AD pathogenesis. Here, we report age versus AD neuropathology–associated differential transcription in four brain regions in the olfactory pathway of 10 female African green monkeys (vervet, Chlorocebus aethiops sabaeus), a well‐described model of early AD‐like neuropathology. Methods Transcriptional profiles were determined by microarray in the olfactory bulb (OB), piriform cortex (PC), temporal lobe white matter (WM), and inferior temporal cortex (ITC). Amyloid beta (Aβ) plaque load in parietal and temporal cortex was determined by immunohistochemistry, and concentrations of Aβ42, Aβ40, and norepinephrine in ITC were determined by enzyme‐linked immuosorbent assay (ELISA). Transcriptional profiles were compared between middle‐aged and old animals, and associations with AD‐relevant neuropathological measures were determined. Results Transcriptional profiles varied by brain region and age group. Expression levels of TRO and RNU4‐1 were significantly lower in all four regions in the older group. An additional 29 genes were differentially expressed by age in three of four regions. Analyses of a combined expression data set of all four regions identified 77 differentially expressed genes (DEGs) by age group. Among these DEGs, older subjects had elevated levels of CTSB, EBAG9, LAMTOR3, and MRPL17, and lower levels of COMMD10 and TYW1B. A subset of these DEGs was associated with neuropathology biomarkers. Notably, CTSB was positively correlated with Aβ plaque counts, Aβ42:Aβ40 ratios, and norepinephrine levels in all brain regions. Discussion These data demonstrate age differences in gene expression in olfaction‐associated brain regions. Biological processes exhibiting age‐related enrichment included the regulation of cell death, vascular function, mitochondrial function, and proteostasis. A subset of DEGs was specifically associated with AD phenotypes. These may represent promising targets for future mechanistic investigations and perhaps therapeutic intervention

    Computerized neurocognitive profile in young people with 22q11.2 deletion syndrome compared to youths with schizophrenia and At-Risk for psychosis

    No full text
    Adults with 22q11.2 Deletion syndrome (22q11DS) have increased prevalence of schizophrenia features. Our goal is to compare the neurocognitive profile in 22q11DS, schizophrenia and individuals at risk for schizophrenia. Twenty-one 22q11DS patients (832 years, mean 14.9 years, 15M, 6F) were matched to four comparison groups on age: low risk (n=21), first-degree family members of schizophrenia patients (genetic risk, n=20), individuals exhibiting putatively prodromal symptoms (clinical risk, n=19), and patients with schizophrenia (n=21). All participants received semi-structured interviews [Diagnostic Interview for Genetic Studies (DIGS) and the Structured Interview for Prodromal Syndromes (SIPS)], and a computerized neurocognitive battery (CNB) measuring the following domains: Abstraction and Mental Flexibility, Attention, Working Memory, Verbal Memory, Face Memory, Spatial Memory, Language, Spatial Processing, Sensorimotor Dexterity, and Emotion Processing. Sixty percent of 22q11DS participants met SIPS criteria for prodromal symptoms and one participant met criteria for paranoid schizophrenia. Thirty-eight percent met criteria for Depressive Disorders. All 22q11DS participants successfully completed the CNB. 22q11DS participants were significantly less accurate in nearly all domains, but had similar speed of response compared to the other groups. Their profile resembled that of the psychosis groups in accuracy and speed, except for more pronounced deficits in accuracy for face memory and emotion processing. Subthreshold psychotic symptoms are present in a high proportion of 22q11DS participants. Deficits shown in the CNB are more pronounced for accuracy than speed relative to the psychosis groups with similar profiles. Similar deficits have been described in the 22q11DS population using non-computerized measures, which require increased testing time. (C) 2011 Wiley Periodicals, Inc

    The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses.

    Get PDF
    Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1) and the pH based differential extraction of synaptic membranes (Methods 2 and 3). All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM) and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined
    corecore