13 research outputs found

    AIMSurv: First pan-European harmonized surveillance of Aedes invasive mosquito species of relevance for human vector-borne diseases

    Get PDF
    Human and animal vector-borne diseases, particularly mosquito-borne diseases, are emerging or re-emerging worldwide. Six Aedes invasive mosquito (AIM) species were introduced to Europe since the 1970s: Aedes aegypti, Ae. albopictus, Ae. japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus. Here, we report the results of AIMSurv2020, the first pan-European surveillance effort for AIMs. Implemented by 42 volunteer teams from 24 countries. And presented in the form of a dataset named “AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action. Project ID: CA17108”. AIMSurv2020 harmonizes field surveillance methodologies for sampling different AIMs life stages, frequency and minimum length of sampling period, and data reporting. Data include minimum requirements for sample types and recommended requirements for those teams with more resources. Data are published as a Darwin Core archive in the Global Biodiversity Information Facility- Spain, comprising a core file with 19,130 records (EventID) and an occurrences file with 19,743 records (OccurrenceID). AIM species recorded in AIMSurv2020 were Ae. albopictus, Ae. japonicus and Ae. koreicus, as well as native mosquito species

    Barcoding of the Genus Culicoides (Diptera: Ceratopogonidae) in Austria—An Update of the Species Inventory Including the First Records of Three Species in Austria

    No full text
    Ceratopogonidae are small nematoceran Diptera with a worldwide distribution, consisting of more than 5400 described species, divided into 125 genera. The genus Culicoides is known to comprise hematophagous vectors of medical and veterinary importance. Diseases transmitted by Culicoides spp. Such as African horse sickness virus, Bluetongue virus, equine encephalitis virus (Reoviridae) and Schmallenberg virus (Bunyaviridae) affect large parts of Europe and are strongly linked to the spread and abundance of its vectors. However, Culicoides surveillance measures are not implemented regularly nor in the whole of Austria. In this study, 142 morphologically identified individuals were chosen for molecular analyses (barcoding) of the mitochondrial cytochrome c oxidase subunit I gene (mt COI). Molecular analyses mostly supported previous morphologic identification. Mismatches between results of molecular and morphologic analysis revealed three new Culicoides species in Austria, Culicoides gornostaevae Mirzaeva, 1984, which is a member of the Obsoletus group, C. griseidorsum Kieffer, 1918 and C. pallidicornis Kieffer, 1919 as well as possible cryptic species. We present here the first Austrian barcodes of the mt COI region of 26 Culicoides species and conclude that barcoding is a reliable tool with which to support morphologic analysis, especially with regard to the difficult to identify females of the medically and economically important genus Culicoides

    Dirofilaria spp. and Angiostrongylus vasorum: Current Risk of Spreading in Central and Northern Europe

    Get PDF
    In the past few decades, the relevance of Dirofilaria immitis and Dirofilaria repens, causing cardiopulmonary and subcutaneous dirofilariosis in dogs and cats, and of Angiostrongylus vasorum, causing canine angiostrongylosis, has steadily increased in Central and Northern Europe. In this review, a summary of published articles and additional reports dealing with imported or autochthonous cases of these parasites is provided for Central (Austria, Czechia, Germany, Hungary, Luxemburg, Poland, Slovakia, Slovenia, and Switzerland) and Northern (Denmark, Finland, Iceland, Norway, and Sweden) Europe. Research efforts focusing on Dirofilaria spp. and A. vasorum have varied by country, and cross-border studies are few. The housing conditions of dogs, pet movements, the spread of competent vectors, and climate change are important factors in the spread of these nematodes. Dogs kept outside overnight are a major factor for the establishment of Dirofilaria spp. However, the establishment of invasive, diurnal, synanthropic, competent mosquito vectors such as Aedes albopictus may also influence the establishment of Dirofilaria spp. The drivers of the spread of A. vasorum remain not fully understood, but it seems to be influenced by habitats shared with wild canids, dog relocation, and possibly climatic changes; its pattern of spreading appears to be similar in different countries. Both Dirofilaria spp. and A. vasorum merit further monitoring and research focus in Europe

    Dirofilaria spp. and Angiostrongylus vasorum: current risk of spreading in Central and Northern Europe

    Full text link
    In the past few decades, the relevance of Dirofilaria immitis and Dirofilaria repens, causing cardiopulmonary and subcutaneous dirofilariosis in dogs and cats, and of Angiostrongylus vasorum, causing canine angiostrongylosis, has steadily increased in Central and Northern Europe. In this review, a summary of published articles and additional reports dealing with imported or autochthonous cases of these parasites is provided for Central (Austria, Czechia, Germany, Hungary, Luxemburg, Poland, Slovakia, Slovenia, and Switzerland) and Northern (Denmark, Finland, Iceland, Norway, and Sweden) Europe. Research efforts focusing on Dirofilaria spp. and A. vasorum have varied by country, and cross-border studies are few. The housing conditions of dogs, pet movements, the spread of competent vectors, and climate change are important factors in the spread of these nematodes. Dogs kept outside overnight are a major factor for the establishment of Dirofilaria spp. However, the establishment of invasive, diurnal, synanthropic, competent mosquito vectors such as Aedes albopictus may also influence the establishment of Dirofilaria spp. The drivers of the spread of A. vasorum remain not fully understood, but it seems to be influenced by habitats shared with wild canids, dog relocation, and possibly climatic changes; its pattern of spreading appears to be similar in different countries. Both Dirofilaria spp. and A. vasorum merit further monitoring and research focus in Europe

    Integrative approach to Phlebotomus mascittii Grassi, 1908

    No full text
    Sand flies (Diptera: Psychodidae: Phlebotominae) are blood-feeding insects that transmit the protozoan parasites Leishmania spp. and various arthropod-borne (arbo) viruses. While in Mediterranean parts of Europe the sand fly fauna is diverse, in Central European countries including Austria mainly Phlebotomus mascittii is found, an assumed but unproven vector of Leishmania infantum. To update the currently understudied sand fly distribution in Austria, a sand fly survey was performed and other entomological catches were screened for sand flies. Seven new trapping locations of Ph. mascittii are reported including the first record in Vienna, representing also one of the first findings of this species in a city. Morphological identification, supported by fluorescence microscopy, was confirmed by two molecular approaches, including sequencing and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) protein profiling. Sand fly occurrence and activity were evaluated based on surveyed locations, habitat requirements and climatic parameters. Moreover, a first comparison of European Ph. mascittii populations was made by two marker genes, cytochrome c oxidase subunit 1 (COI), and cytochrome b (cytb), as well as MALDI-TOF mass spectra. Our study provides new important records of Ph. mascittii in Austria and valuable data for prospective entomological surveys. MALDI-TOF MS protein profiling was shown to be a reliable tool for differentiation between sand fly species. Rising temperatures and globalization demand for regular entomological surveys to monitor changes in species distribution and composition. This is also important with respect to the possible vector competence of Ph. mascittii

    Dirofilaria spp. and Angiostrongylus vasorum

    Full text link
    Abstract In the past few decades, the relevance of Dirofilaria immitis and Dirofilaria repens, causing cardiopulmonary and subcutaneous dirofilariosis in dogs and cats, and of Angiostrongylus vasorum, causing canine angiostrongylosis, has steadily increased in Central and Northern Europe. In this review, a summary of published articles and additional reports dealing with imported or autochthonous cases of these parasites is provided for Central (Austria, Czechia, Germany, Hungary, Luxemburg, Poland, Slovakia, Slovenia, and Switzerland) and Northern (Denmark, Finland, Iceland, Norway, and Sweden) Europe. Research efforts focusing on Dirofilaria spp. and A. vasorum have varied by country, and cross-border studies are few. The housing conditions of dogs, pet movements, the spread of competent vectors, and climate change are important factors in the spread of these nematodes. Dogs kept outside overnight are a major factor for the establishment of Dirofilaria spp. However, the establishment of invasive, diurnal, synanthropic, competent mosquito vectors such as Aedes albopictus may also influence the establishment of Dirofilaria spp. The drivers of the spread of A. vasorum remain not fully understood, but it seems to be influenced by habitats shared with wild canids, dog relocation, and possibly climatic changesits pattern of spreading appears to be similar in different countries. Both Dirofilaria spp. and A. vasorum merit further monitoring and research focus in Europe

    First Nationwide Monitoring Program for the Detection of Potentially Invasive Mosquito Species in Austria

    No full text
    In Austria, only fragmented information on the occurrence of alien and potentially invasive mosquito species exists. The aim of this study is a nationwide overview on the situation of those mosquitoes in Austria. Using a nationwide uniform protocol for the first time, mosquito eggs were sampled with ovitraps at 45 locations in Austria at weekly intervals from May to October 2020. The sampled eggs were counted and the species were identified by genetic analysis. The Asian tiger mosquito Aedes albopictus was found at two sites, once in Tyrol, where this species has been reported before, and for the first time in the province of Lower Austria, at a motorway rest stop. The Asian bush mosquito Aedes japonicus was widespread in Austria. It was found in all provinces and was the most abundant species in the ovitraps by far. Aedes japonicus was more abundant in the South than in the North and more eggs were found in habitats with artificial surfaces than in (semi-) natural areas. Further, the number of Ae. japonicus eggs increased with higher ambient temperature and decreased with higher wind speed. The results of this study will contribute to a better estimation of the risk of mosquito-borne disease in Austria and will be a useful baseline for a future documentation of changes in the distribution of those species

    Comparison of a multiplex PCR with DNA barcoding for identification of container breeding mosquito species

    No full text
    Identification of mosquitoes greatly relies on morphological specification. Since some species cannot be distinguished reliably by morphological methods, it is important to incorporate molecular techniques into the diagnostic pipeline. DNA barcoding using Sanger sequencing is currently widely used for identification of mosquito species. However, this method does not allow detection of multiple species in one sample, which would be important when analysing mosquito eggs. Detection of container breeding Aedes is typically performed by collecting eggs using ovitraps. These traps consist of a black container filled with water and a wooden spatula inserted for oviposition support. Aedes mosquitoes of different species might lay single or multiple eggs on the spatula. In contrast to Sanger sequencing of specific polymerase chain reaction (PCR) products, multiplex PCR protocols targeting specific species of interest can be of advantage for detection of multiple species in the same sample.For this purpose, we adapted a previously published PCR protocol for simultaneous detection of four different Aedes species that are relevant for Austrian monitoring programmes, as they can be found in ovitraps: Aedes albopictus, Aedes japonicus, Aedes koreicus, and Aedes geniculatus. For evaluation of the multiplex PCR protocol, we analysed 2271 ovitrap mosquito samples from the years 2021 and 2022, which were collected within the scope of an Austrian nationwide monitoring programme. We compared the results of the multiplex PCR to the results of DNA barcoding.Of 2271 samples, the multiplex PCR could identify 1990 samples, while species determination using DNA barcoding of the mitochondrial cytochrome c oxidase subunit I gene was possible in 1722 samples. The multiplex PCR showed a mixture of different species in 47 samples, which could not be detected with DNA barcoding.In conclusion, identification of Aedes species in ovitrap samples was more successful when using the multiplex PCR protocol as opposed to the DNA barcoding protocol. Additionally, the multiplex PCR allowed us to detect multiple species in the same sample, while those species might have been missed when using DNA barcoding with Sanger sequencing alone. Therefore, we propose that the multiplex PCR protocol is highly suitable and of great advantage when analysing mosquito eggs from ovitraps

    Mosquito Alert Dataset

    No full text
    The Mosquito Alert dataset includes occurrence records of adult mosquitoes. The records were collected through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Each record presented in the database is linked to a photograph submitted by a citizen scientist and validated by entomological experts to determine if it provides evidence of the presence of any of five targeted mosquito vectors of top concern in Europe (i.e. Aedes albopictus, Aedes aegypti, Aedes japonicus, Aedes koreicus, Culex pipiens). The temporal coverage of the database is from 2014 through 2022 and the spatial coverage is worldwide. Most of the records from 2014 to 2020 are from Spain, reflecting the fact that the project was funded by Spanish national and regional funding agencies. Since autumn 2020 the data has expanded to include substantial records from other countries in Europe, particularly the Netherlands, Italy, and Hungary, thanks to a human volunteering network of entomologists coordinated by the AIM-COST Action and to technological developments through the VEO project to increase scalability. Among many possible applications, Mosquito Alert dataset facilitates the development of citizen-based early warning systems for mosquito-borne disease risk. This dataset can be further re-used for modelling vector exposure risk or training machine-learning detection and classification routines on the linked images, to help experts in data validation and build up automated alert systems
    corecore