8 research outputs found

    Membrane protein topogenesis

    No full text
    The membranes of cells are highly complex and heterogeneous structures that fulfill multiple vital tasks. They form thin barriers that seal out the environment, thus defining the cell’s boundaries. They mediate the selective exchange of information and substances between the inside and outside of cells, thus making cellular life and survival possible and allowing fast adaptation to changing conditions. Not least importantly, they harbor key components of many essential processes such as the photosynthesis and respiration. Membranes are composed of a largely apolar lipid matrix densely punctuated with a large number of different proteins. These so-called membrane proteins usually span the lipid matrix and protrude out into the space on either side of the membrane. Over millions of years of evolution, cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. Our understanding of these machines and the insertion processes they mediate has reached a point where we have a very good picture of membrane protein biogenesis in various types of cells. However, more data still needs to be collected to completely comprehend the complex molecular mechanisms and the physical chemistry that underlies the different insertion processes. The work presented in this thesis contributes to that understanding. More precisely, we have studied how weakly hydrophobic transmembrane elements of membrane proteins, which cannot spontaneously enter the largely apolar membrane matrices, are efficiently incorporated. Indeed, such elements are quite common in membrane proteins and our work has lead to the formulation of a novel mechanism for how they can be integrated into biological membranes. We have also added to the understanding of the physical chemistry that underlies the membrane insertion process by systematically introducing non-proteinogenic amino acids into a membrane-spanning segment of a membrane protein and studying its membrane insertion capability

    Positional editing of transmembrane domains during ion channel assembly

    No full text
    The integration of transmembrane (TM)-spanning regions of many channels and ion transporters is potentially compromised by the presence of polar and charged residues required for biological function. Although the two TMs of the ATP-gated ion channel subunit P2X2 each contain charged/polar amino acids, we found that each TM is efficiently membrane inserted when it is analysed in isolation, and uncovered no evidence for cooperativity between these two TMs during P2X2 integration. However, using minimal N-glycosylation distance mapping, we find that the positioning of TM2 in newly synthesized P2X2 monomers is distinct from that seen in subunits of the high-resolution structures of assembled homologous trimers. We conclude that P2X2 monomers are initially synthesised at the endoplasmic reticulum in a distinct conformation, where the extent of the TM-spanning regions is primarily defined by the thermodynamic cost of their membrane integration at the Sec61 translocon. In this model, TM2 of P2X2 subsequently undergoes a process of positional editing within the membrane that correlates with trimerisation of the monomer, a process requiring specific polar/charged residues in both TM1 and TM2. We postulate that the assembly process offsets any energetic cost of relocating TM2, and find evidence that positional editing of TM2 in the acid-sensing ion channel (ASIC1a) is even more pronounced than that observed for P2X2. Taken together, these data further underline the potential complexities involved in accurately predicting TM domains. We propose that the orchestrated repositioning of TM segments during subunit oligomerisation plays an important role in generating the functional architecture of active ion channels, and suggest that the regulation of this underappreciated biosynthetic step may provide an elegant mechanism for maintaining ER homeostasis

    Changed membrane integration and catalytic site conformation are two mechanisms behind the increased Aβ42/Aβ40 ratio by presenilin 1 familial Alzheimer-linked mutations

    Get PDF
    The enzyme complex γ-secretase generates amyloid β-peptide (Aβ), a 37–43-residue peptide associated with Alzheimer disease (AD). Mutations in presenilin 1 (PS1), the catalytical subunit of γ-secretase, result in familial AD (FAD). A unifying theme among FAD mutations is an alteration in the ratio Aβ species produced (the Aβ42/Aβ40 ratio), but the molecular mechanisms responsible remain elusive. In this report we have studied the impact of several different PS1 FAD mutations on the integration of selected PS1 transmembrane domains and on PS1 active site conformation, and whether any effects translate to a particular amyloid precursor protein (APP) processing phenotype. Most mutations studied caused an increase in the Aβ42/Aβ40 ratio, but via different mechanisms. The mutations that caused a particular large increase in the Aβ42/Aβ40 ratio did also display an impaired APP intracellular domain (AICD) formation and a lower total Aβ production. Interestingly, seven mutations close to the catalytic site caused a severely impaired integration of proximal transmembrane/hydrophobic sequences into the membrane. This structural defect did not correlate to a particular APP processing phenotype. Six selected FAD mutations, all of which exhibited different APP processing profiles and impact on PS1 transmembrane domain integration, were found to display an altered active site conformation. Combined, our data suggest that FAD mutations affect the PS1 structure and active site differently, resulting in several complex APP processing phenotypes, where the most aggressive mutations in terms of increased Aβ42/Aβ40 ratio are associated with a decrease in total γ-secretase activity

    Membrane Insertion of Marginally Hydrophobic Transmembrane Helices Depends on Sequence Context

    No full text
    In mammalian cells, most integral membrane proteins are initially inserted into the endoplasmic reticulum membrane by the so-called Sec61 translocon. However, recent predictions suggest that many transmembrane helices (TMHs) in multispanning membrane proteins are not sufficiently hydrophobic to be recognized as such by the translocon. In this study, we have screened 16 marginally hydrophobic TMHs from membrane proteins of known three-dimensional structure. Indeed, most of these TMHs do not insert efficiently into the endoplasmic reticulum membrane by themselves. To test if loops or TMHs immediately upstream or downstream of a marginally hydrophobic helix might influence the insertion efficiency, insertion of marginally hydrophobic helices was also studied in the presence of their neighboring loops and helices. The results show that flanking loops and nearest-neighbor TMHs are sufficient to ensure the insertion of many marginally hydrophobic helices. However, for at least two of the marginally hydrophobic helices, the local interactions are not enough, indicating that post-insertional rearrangements are involved in the folding of these proteins.authorCount :12</p

    RIFINs are adhesins implicated in severe Plasmodium falciparum malaria.

    No full text
    Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum-encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs-preferentially of blood group A-to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population
    corecore