11 research outputs found

    EcR recruits dMi-2 and increases efficiency of dMi-2-mediated remodelling to constrain transcription of hormone-regulated genes

    Get PDF
    Gene regulation by steroid hormones plays important roles in health and disease. In Drosophila, the hormone ecdysone governs transitions between key developmental stages. Ecdysone-regulated genes are bound by a heterodimer of ecdysone receptor (EcR) and Ultraspiracle. According to the bimodal switch model, steroid hormone receptors recruit corepressors in the absence of hormone and coactivators in its presence. Here we show that the nucleosome remodeller dMi-2 is recruited to ecdysone-regulated genes to limit transcription. Contrary to the prevalent model, recruitment of the dMi-2 corepressor increases upon hormone addition to constrain gene activation through chromatin remodelling. Furthermore, EcR and dMi-2 form a complex that is devoid of Ultraspiracle. Unexpectedly, EcR contacts the dMi-2 ATPase domain and increases the efficiency of dMi-2-mediated nucleosome remodelling. This study identifies a non-canonical EcR-corepressor complex with the potential for a direct regulation of ATP-dependent nucleosome remodelling by a nuclear hormone receptor

    Analysis of individual remodeled nucleosomes reveals decreased histone–DNA contacts created by hSWI/SNF

    Get PDF
    Chromatin remodeling enzymes use the energy of ATP hydrolysis to alter histone–DNA contacts and regulate DNA-based processes in eukaryotes. Whether different subfamilies of remodeling complexes generate distinct products remains uncertain. We have developed a protocol to analyze nucleosome remodeling on individual products formed in vitro. We used a DNA methyltransferase to examine DNA accessibility throughout nucleosomes that had been remodeled by the ISWI and SWI/SNF families of enzymes. We confirmed that ISWI-family enzymes mainly created patterns of accessibility consistent with canonical nucleosomes. In contrast, SWI/SNF-family enzymes generated widespread DNA accessibility. The protection patterns created by these enzymes were usually located at the extreme ends of the DNA and showed no evidence for stable loop formation on individual molecules. Instead, SWI/SNF family proteins created extensive accessibility by generating heterogeneous products that had fewer histone–DNA contacts than a canonical nucleosome, consistent with models in which a canonical histone octamer has been ‘pushed’ off of the end of the DNA

    The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization

    No full text
    Drosophila Mi-2 (dMi-2) is the ATPase subunit of a complex combining ATP-dependent nucleosome remodelling and histone deacetylase activities. dMi-2 contains an HMG box-like region, two PHD fingers, two chromodomains and a SNF2-type ATPase domain. It is not known which of these domains contribute to nucleosome remodelling. We have tested a panel of dMi-2 deletion mutants in ATPase, nucleosome mobilization and nucleosome binding assays. Deletion of the chromodomains impairs all three activities. A dMi-2 mutant lacking the chromodomains is incorporated into a functional histone deacetylase complex in vivo but has lost nucleosome-stimulated ATPase activity. In contrast to dHP1, dMi-2 does not bind methylated histone H3 tails and does not require histone tails for nucleosome binding. Instead, the dMi-2 chromodomains display DNA binding activity that is not shared by other chromodomains. Our results suggest that the chromodomains act at an early step of the remodelling process to bind the nucleosome substrate predominantly via protein–DNA interactions. Furthermore, we identify DNA binding as a novel chromodomain-associated activity

    SIRT6 recruits SNF2H to sites of DNA breaks, preventing genomic instability through chromatin remodeling

    No full text
    DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration, and aging. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the deacetylase sirtuin 6 (SIRT6) is one of the earliest factors recruited to double-strand breaks (DSBs). SIRT6 recruits the chromatin remodeler SNF2H to DSBs and focally deacetylates histone H3K56. Lack of SIRT6 and SNF2H impairs chromatin remodeling, increasing sensitivity to genotoxic damage and recruitment of downstream factors such as 53BP1 and breast cancer 1 (BRCA1). Remarkably, SIRT6-deficient mice exhibit lower levels of chromatin-associated SNF2H in specific tissues, a phenotype accompanied by DNA damage. We demonstrate that SIRT6 is critical for recruitment of a chromatin remodeler as an early step in the DNA damage response, indicating that proper unfolding of chromatin plays a rate-limiting role. We present a unique crosstalk between a histone modifier and a chromatin remodeler, regulating a coordinated response to prevent DNA damage.Fil: Toiber, Deborah. Harvard Medical School; Estados UnidosFil: Erdel, Fabian. Deutsches Krebsforschungszentrum; AlemaniaFil: Bouazoune, Karim. Harvard Medical School; Estados UnidosFil: Silberman, Dafne Magali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Harvard Medical School; Estados UnidosFil: Zhong, Lei. Harvard Medical School; Estados UnidosFil: Mulligan, Peter. Harvard Medical School; Estados UnidosFil: Sebastián, Carlos. Harvard Medical School; Estados UnidosFil: Cosentino, Claudia. Harvard Medical School; Estados UnidosFil: Martínez Pastor, Bárbara. Harvard Medical School; Estados UnidosFil: Giacosa, Sofia. Harvard Medical School; Estados UnidosFil: D´Urso, Agustina. Harvard Medical School; Estados UnidosFil: Näär, Anders M.. Harvard Medical School; Estados UnidosFil: Kingston, Robert. Harvard Medical School; Estados UnidosFil: Rippe, Karsten. Harvard Medical School; Estados UnidosFil: Mostoslavsky, Raul. Harvard Medical School; Estados Unido

    Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology

    No full text
    Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance. Members of the CHD chromatin remodeler family are implicated in human pathologies, however CHD6 remained poorly studied. Here, the authors show that CHD6 binds to and regulates autophagy and stress response genes across cell types. They identify a clinical mutation that affects its ability to recruit cofactors, leading to impaired autophagy induction and DNA repair
    corecore