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EcR recruits dMi-2 and increases efficiency
of dMi-2-mediated remodelling to constrain
transcription of hormone-regulated genes
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Roman Pahl2,w, Florian Finkernagel3, Magdalena Murawska1,w, Ikram Ullah1 & Alexander Brehm1

Gene regulation by steroid hormones plays important roles in health and disease.

In Drosophila, the hormone ecdysone governs transitions between key developmental stages.

Ecdysone-regulated genes are bound by a heterodimer of ecdysone receptor (EcR) and

Ultraspiracle. According to the bimodal switch model, steroid hormone receptors recruit

corepressors in the absence of hormone and coactivators in its presence. Here we show that

the nucleosome remodeller dMi-2 is recruited to ecdysone-regulated genes to limit

transcription. Contrary to the prevalent model, recruitment of the dMi-2 corepressor

increases upon hormone addition to constrain gene activation through chromatin remodel-

ling. Furthermore, EcR and dMi-2 form a complex that is devoid of Ultraspiracle. Unexpect-

edly, EcR contacts the dMi-2 ATPase domain and increases the efficiency of dMi-2-mediated

nucleosome remodelling. This study identifies a non-canonical EcR-corepressor complex with

the potential for a direct regulation of ATP-dependent nucleosome remodelling by a nuclear

hormone receptor.
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I
n Drosophila, the hormone 20-hydroxy ecdysone (20HE)
controls major developmental transitions1. Ecdysone binds to
a heterodimeric nuclear hormone receptor composed of the

ecdysone receptor (EcR) and the Drosophila RXR homolog
Ultraspiracle (USP). In the absence of hormone EcR–USP binds
DNA and represses transcription by interacting with
corepressors2–4. Hormone exposure increases transport of
EcR and USP into the nucleus and conformational changes
result in the exchange of corepressors for coactivators and gene
activation5,6. In this bimodal switch model, EcR–USP serves as a
relatively static landing platform for several corepressors and
coactivators that can modify histones and remodel chromatin.
The EcR–USP heterodimer shares this mechanism with
mammalian class II nuclear hormone receptors. However,
recent results suggest that gene regulation by nuclear hormone
receptors is more complex than this model implies: nuclear
receptor complex formation and their binding to chromatin as
well as to coregulators are highly dynamic7,8.

Vertebrate CHD3 (Mi-2-alpha) and CHD4 (Mi-2-beta) and
Drosophila Mi-2 (dMi-2) are members of the CHD family of
ATP-dependent nucleosome remodellers. They are central
subunits of Nucleosome Remodelling and Deacetylation (NuRD)
complexes and play important roles in development9–12. NuRD
and CHD4 are indispensable for proper blastocyst and embryonic
stem cell differentiation13,14. Moreover, CHD4 and dMi-2 are
important for cell fate determination in several developmental
lineages where they cooperate with transcription factors to
establish differentiation-specific transcription programmes by
generating chromatin environments conducive to gene repression
or activation15–17.

Here we demonstrate accumulation of dMi-2 at ecdysone-
activated polytene chromosome puffs by immunofluorescence.
We used chromatin immunoprecipitation sequencing (ChIP-seq)
to identify genomic regions to which dMi-2 binds in response to
ecdysone treatment of S2 cells. A high number of these regions
map to classical ecdysone target genes, such as vrille and broad
complex (Br-C). RNA interference and quantitative reverse
transcription PCR (RT–qPCR) analyses revealed that dMi-2
limits the transcription of coding and noncoding RNAs
emanating from ecdysone-regulated genes thereby restricting
the dynamic range of their activation. In agreement with
a repressive role, dMi-2 is required for maintaining a closed
chromatin conformation at the vrille locus, as detected by
micrococcal nuclease (MNase) digestion. Knockdown and
ChIP experiments show that dMi-2 recruitment depends on the
EcR subunit but, surprisingly, not on the USP subunit of the
heterodimer. Biochemical analysis identified the formation of
a EcR–dMi-2 complex that is devoid of USP. dMi-2 and
USP interact with the same domain of EcR and bind in
a mutually exclusive manner. Unexpectedly, EcR directly contacts
the ATPase domain of dMi-2 and increases the efficiency of
dMi-2-mediated nucleosome remodelling in vitro. Our results
reveal a non-canonical nuclear hormone receptor–corepressor
complex and a novel relationship between hormone receptor and
nucleosome remodelling.

Results
dMi-2 associates with the ecdysone-activated Br-C locus.
As larvae progress through development, several genes are
activated by the hormone 20HE1. Gene activation results in
dramatic changes in chromatin structure that visually manifest
themselves as polytene chromosome ‘puffs’. We observed
a marked enrichment of dMi-2 at prototypical early ecdysone-
induced puffs, including bands B2 (containing the broad complex
(Br-C) locus), 74EF and 75B (Fig. 1a). The ISWI ATPase was

excluded from these puffs demonstrating that the observed
accumulation of dMi-2 was specific for this remodeller. Br-C is an
early ecdysone target and encodes several zinc finger transcription
factors that activate genes at later stages of the ecdysone
cascade (Supplementary Fig. 1A). In S2 cells, ecdysone exposure
strongly activates Br-C transcription without affecting dMi-2
expression (Supplementary Fig. 1B,C). Published dMi-2 ChIP-
chip and ChIP-seq data suggested robust dMi-2 binding within
the first intron of the major Br-C transcripts (modENCODE data
sets Q.2626.S2 and Q4443.S2;18). We verified dMi-2 association
with this region by ChIP (Supplementary Fig. 1D). Moreover, we
detected increased dMi-2 binding to Br-C when cells were
exposed to ecdysone for 6 h. These observations demonstrate that
dMi-2 associates with the ecdysone-regulated Br-C locus in larvae
and S2 cells and that the strength of this association can be
modulated by hormone. This raised the question whether dMi-2
also binds and regulates other ecdysone-activated genes.

Ecdysone increases dMi-2 chromatin binding. We performed
ChIP-seq to identify genomic regions displaying an ecdysone-
induced increase in dMi-2 association in S2 cells. Comparison of
ChIP-seq profiles in the absence and presence of ecdysone
identified 185 such regions (tag count ratio treated versus
untreated of Z2.3; Supplementary Data 1). From here on, we
refer to these regions as ecdysone-induced dMi-2 binding regions
(EIMRs). EIMRs strongly correlated with well-established ecdy-
sone-induced genes (36% of the top 25, 24% of the top
50 EIMRs), including Br-C, vrille, Ecdysone-induced protein (Eip)
genes Eip74EF and Eip75B and let-7 (Fig. 1b). We verified that
these genes were activated by ecdysone using RT–qPCR (Fig. 1c).
We next inspected the dMi-2 ChIP-seq profiles of two well-
established early ecdysone targets, Br-C and vrille, in detail.
Several EIMRs mapped within a region surrounding the
transcriptional start site of the Br-C transcripts broad-RA and
-RB (Fig. 1b,d). Notably, this region contained clear dMi-2 ChIP-
seq signals even in the absence of ecdysone. The vrille locus
harboured two regions with prominent EIMRs (Fig. 1e). Again,
these regions bound dMi-2 also in the absence of hormone.
We validated hormone-modulated dMi-2 association with Br-C
and vrille and the specificity of the ChIP-seq results by RNAi and
ChIP-qPCR (Supplementary Fig. 1e–g). Taken together, the ChIP
analyses suggest that ecdysone treatment does not generate
de novo dMi-2-binding sites. Rather, the hormone increases the
level of dMi-2 chromatin association at specific regions within
ecdysone-regulated genes.

dMi-2 fine-tunes the kinetics and constrains gene activation.
We next asked whether dMi-2 was regulating transcription of
Br-C and vrille. We depleted EcR, its heterodimerization partner
USP or dMi-2 by RNAi in S2 cells (Fig. 2a,b), exposed cells to
ecdysone and then followed Br-C and vrille transcript levels over
the course of 6 h by RT–qPCR (Fig. 2c,d). In control cells, Br-C
and vrille were efficiently stimulated by ecdysone. As expected,
depletion of EcR abrogated activation. Unexpectedly, depletion of
USP still allowed robust stimulation of both genes. Depletion of
dMi-2 markedly increased ecdysone-mediated activation of both
genes. By contrast, RNAi-mediated depletion of ISWI, an unre-
lated chromatin remodeller, did not significantly affect Br-C and
vrille activation in this system (Supplementary Fig. 2). We
conclude that EcR is essential for hormone-mediated stimulation
of Br-C and vrille, whereas its dimerization partner USP is largely
dispensable. dMi-2 appears to fine-tune stimulation kinetics and
prevents excessive Br-C and vrille activation.

dMi-2 represses ecdysone-inducible genes. Given that the
EcR–USP heterodimer represses transcription in the absence of
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hormone2–4, we also analysed the transcript levels of ecdysone-
regulated genes in RNAi-treated cells before ecdysone was added
(Fig. 2e). In addition to Br-C and vrille, we also included in the
analysis Hr4, E23, let-7 and two overlapping noncoding RNAs that
are transcribed from different strands within an EIMR-containing
region upstream of the vrille RE promoter (CR44743 and CR44742;
Fig. 1e). As expected, depletion of EcR resulted in the derepre-
ssion of the majority of genes tested (1.5-fold to 20-fold). By

contrast, with the exceptions of Br-C and E23 (2-fold increase in
transcription), USP depletion failed to significantly derepress these
genes. When we depleted dMi-2, all genes analysed were robustly
upregulated. Derepression levels ranged from 2.5-fold (vrille and
Hr4) to 50-fold (let-7). Again, depletion of the ISWI chromatin
remodeller did not produce such effects (Supplementary Fig. 2,
time point 00). These results suggest that both EcR and dMi-2 play
important roles in repressing the basal transcription of ecdysone-

a

ISWI
dMi-2

Br-C

75B
74EF

ISWI

Br-C

75B
74EFDAPI

Br-C

75B
74EF

dMi-2

Br-C

75B
74EF

b

c

d

Gene GeneChromosomal
location

Chromosomal
location

Tag  count ratio
20HE/untreated

Tag  count ratio
20HE/untreated

Br-C Hr4

Hr39

let-7

vrille

E23

Eip71CD

Eip74EF

Eip75B

Eip93F

X:1477358..1477739

2L:21243843..21244629

2L:18466593..18467231
2L:18467562..18467959

2L:5287309..5287761

2L:5300104..5300765
2L:5287818..5288374

X:1873428..1873690
X:1875407..1876056
X:1880727..1881006
X:1891639..1892296
X:1892892..1893981
X:1862581..1863900
X:1847635..1848371
X:1843512..1846636
X:1842788..1843199
X:1835068..1835552

X: 1469166..1558701

2L: 5286217..5312001

1470k 1480k 1490k

5290k

e
5300k 5310k

broad-RB

CR44743-RA

CR44743-RB
CR44742-RA

broad-RA

Untreated

Untreated

Untreated

+20HE

+20HE

90

45

0

90

45

0

90

45

0

90

45

0

ar
b.

 u
ni

t
ar

b.
 u

ni
t

ar
b.

 u
ni

t
ar

b.
 u

ni
t

ar
b.

 u
ni

t
ar

b.
 u

ni
t

ar
b.

 u
ni

t
ar

b.
 u

ni
t

Untreated

+20HE

+20HE

1500k 1510k 1520k 1530k 1540k 1550k

X:1503871..1504882
X:1501980..1503244
X:1505824..1506650
X:1507134..1507837
X:1501607..1501882
X:1518169..1519290
X:1521429..1521789
X:1529725..1530538

2L:3341165..3341668
2L:3342888..3343806

3L:15505124..15506225

3L:17606258..17606666
3L:17604014..17604467
3L:17600796..17602485

3L:17952436..17953116

3L:17968442..17969229

3R:17769502..17770584

3L:17957577..17960703
3L:17977946..17978413
3L:17970591..17971711
3L:17969260..17970469

3L:17984752..17985430

X:1504917..1505806
2.70 2.37

0

2

4

6

8

10

12

14

0

900

800

700

600

500

400

300

200

100

0 0

2

4

6

8

10

12

5

0

Untreated

+20HE

10

15

20

25

30

35

40

45

50

100

150

200

250

300

350

400

450 Br-C E23

Hr4vrille let-7

R
el

at
iv

e 
to

 R
p4

9

R
el

at
iv

e 
to

 R
p4

9

R
el

at
iv

e 
to

 R
p4

9

R
el

at
iv

e 
to

 R
p4

9

R
el

at
iv

e 
to

 R
p4

9

2.33
4.66
2.44
2.60
2.55
2.38
2.63
2.76
3.65

2.34

3.47
2.43

3.00
3.53
3.75

4.52
4.55
2.65
2.85
2.98
3.52
2.62
3.09
2.70

2.62
2.52

2.52

2.99
3.53
3.53

2.37
2.32
2.86
2.50
3.20
2.67
2.93

2.82

0

85

170

0

0

0

40

40

8055

55

27.5

27.5

0

0

80

85

170

vrille-RE

vrille-RC
vrille-RA

vrille-RD

Figure 1 | dMi-2 binds ecdysone-activated genes. (a) Polytene chromosomes were stained with DAPI (upper left panel), ISWI antibody (upper right

panel) or dMi-2 antibody (lower left panel) and analysed by immunofluorescence. Lower right panel shows overlay of ISWI and dMi-2 signals. Arrows

indicate three early ecdysone-induced puffs: Br-C, 74EF, and 75B. Scale bar is 10mm. (b) Regions with ecdysone-induced increased dMi-2 binding (EIMRs)

within known ecdysone-activated genes. Cells were treated for 6 h with 1 mM 20HE. (c) RNA expression of EIMR-containing genes in S2 cells was

determined by RT–qPCR. Ratios of RNA levels of the gene of interest to rp49 RNA levels in untreated and 20HE-treated cells were calculated. The ratio

determined in untreated cells was set to 1 and the ratio in ecdysone-treated cells was expressed relative to this. Error bars denote s.d. of technical

triplicates. (d) dMi-2 ChIP-seq profile across the Br-C locus in untreated and ecdysone-treated (þ 20HE) S2 cells. Top: schematic representation of

Br-C locus. Only two Br-C transcripts are shown for clarity; see Supplementary Fig. 1a for complete set. Bottom: magnification of most prominent

EIMR-containing region within Br-C. (e) dMi-2 ChIP-seq profile across the vrille locus in untreated and ecdysone-treated (þ 20HE) S2 cells. Top: schematic

representation of vrille locus. Bottom: magnification of two EIMR-containing regions.
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dependent genes in the absence of hormone. Moreover, our results
indicate that repression by EcR and dMi-2 can be maintained even
when USP levels are greatly reduced.

When we analysed transcription of the same set of genes after
6 h exposure to 20HE, we observed strong reduction of gene
activation in EcR-depleted cells (ranging from 1.5-fold to 70-fold
reduction) but not in USP-depleted cells. Depletion of dMi-2
resulted in a general increase in gene activation.

In summary, our depletion experiments reveal that dMi-2
represses basal transcription and limits ecdysone-induced activa-
tion of several coding and noncoding transcripts.

dMi-2 contributes to a closed chromatin structure. We
asked whether dMi-2 regulates transcription by modulating
chromatin structure. To address this question, we used
MNase digestion of chromatin coupled to qPCR to assess
changes in chromatin accessibility at the vrille locus following
RNAi depletion of dMi-2 (Fig. 2f,g). Regions with a more
accessible chromatin structure are more sensitive to MNase
digestion resulting in lower qPCR product levels. In the
absence of ecdysone, most vrille regions interrogated did
not show significant changes in chromatin accessibility
following dMi-2 depletion. However, both EIMR-containing
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vrille regions displayed increased MNase sensitivity (region A:
80% reduction of qPCR signal, region D: 20% reduction of
qPCR signal). We observed similar results in ecdysone-exposed
cells.

Taken together, these results suggest that dMi-2 maintains
a more closed, inaccessible chromatin structure at EIMRs both
in the absence and presence of ecdysone. The loss of MNase

protection in dMi-2 depleted cells correlates with derepression
of basal and excessive activation of ecdysone-induced
vrille transcription (Fig. 2b,c). These findings support the
hypothesis that dMi-2 represses ecdysone-induced genes, at
least in part, by generating closed, less accessible chromatin
structures.

EcR but not USP is required for dMi-2 recruitment. We
analysed EIMR DNA sequences bioinformatically and found a
strong enrichment of predicted EcR–USP-binding sites (Fig. 3a).
This suggests that EcR–USP plays a role in dMi-2 recruitment.
To test this, we RNAi-depleted S2 cells of EcR or USP (Fig. 3b),
exposed cells to ecdysone and determined dMi-2 binding to
Br-C and vrille by ChIP-qPCR (Fig. 3c). The increase of dMi-2
binding to Br-C and vrille after ecdysone exposure was abolished
in EcR-depleted cells. Surprisingly, depletion of USP had only
a minor effect on dMi-2 chromatin binding. These results
reveal that efficient recruitment of dMi-2 to Br-C and vrille
is critically dependent on EcR but not significantly affected by
USP depletion.

EcR and dMi-2 interact in vivo and in vitro. To determine
whether dMi-2, EcR and USP physically interact, we immuno-
precipitated dMi-2 from S2 nuclear extracts from untreated
(Fig. 4a, lanes 1–4) or ecdysone-exposed cells (lanes 5–8).
As expected, dMi-2 antibody but not control antibodies
precipitated dMi-2 (lanes 2–4 and 6–8). EcR was clearly detect-
able in both anti-dMi-2 immunoprecipitates. Interestingly,
this interaction was not significantly influenced by hormone
(compare lanes 4 and 8), suggesting that dMi-2 and EcR form
a complex in an ecdysone-independent manner in vivo.
Given that the USP western blot signals were generally weak
(compare dMi-2, EcR and USP signals in lanes 1 and 5) our
failure to coprecipitate USP with dMi-2 did not allow us to rule
out a physical interaction in this experiment.

We confirmed the interaction of EcR and dMi-2 using
baculovirus-expressed recombinant proteins (Fig. 4b and
Supplementary Fig. 3A). Both proteins interacted strongly, as
judged by Coomassie staining, and the complex was resistant to
high salt concentrations (Fig. 4b). Treating baculovirus-infected
Sf9 cells with ecdysone did not influence binding (Supplementary
Fig. 3B). We also pretreated the serum used for culturing
cells with charcoal to deplete any steroid hormone traces
that might influence dMi-2 binding to EcR. This did not affect
the result. Taken together, these findings suggest that EcR and
dMi-2 interact in an ecdysone-independent manner both in vitro
and in vivo.

dMi-2 and USP compete for binding to EcR. We used baculo-
virus-expressed recombinant proteins to analyse the interactions
between dMi-2, EcR and USP in more detail (Fig. 4c, top
left panel). We co-expressed FLAG-dMi-2, untagged EcR and
HA–USP in different combinations and subjected extracts to
FLAG- or HA-affinity purification. Again, dMi-2 copurified
with EcR (middle left panel). By contrast, USP was undetectable
in the dMi-2 immunoprecipitate. Purification of USP demon-
strated a robust interaction with EcR (bottom left panel).
By contrast, no dMi-2 was detectable in the USP immunopreci-
pitate. Thus we were unable to detect an interaction between
USP and dMi-2 even when both proteins were strongly
overexpressed.

Since both dMi-2 and USP bound to EcR, we asked whether
they could do so simultaneously. When we co-expressed all three
proteins, EcR still efficiently bound to USP (Fig. 4c, bottom left
panel, lane 40). By contrast, EcR was barely detectable in the
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ecdysone-activated genes. (a) Enrichment of predicted EcR–USP-binding
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protein extracts of S2 cells treated with dsRNA directed against GFP
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treated with ecdysone (þ 20HE). Antibodies used are shown on the right,

molecular masses on the left. Tubulin served as a loading control. (c) dMi-2
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dMi-2 immunoprecipitate (middle left panel, lane 24). These
results indicate that USP and dMi-2 compete for binding to EcR.

To determine the effect of ecdysone on these interactions, we
repeated the interaction assays using infected Sf9 cells that were
exposed to hormone during recombinant protein expression.
This did not change the results (Fig. 4c, right panels). These
findings confirm that EcR and USP heterodimerize in the absence
of hormone19 and correlate with our observation that dMi-2 and
EcR coimmunoprecipitate from S2 extracts in a hormone-
independent manner (Fig. 4a). To map which region of
EcR binds to dMi-2, we generated baculoviruses expressing
EcR mutants and tested their interaction with dMi-2 (Fig. 5a).
This mapped the dMi-2 interaction domain to the LBD/AF2

domain of EcR that also serves as the binding interface for
heterodimerization with USP20.

Taken together, these results demonstrate that (i) dMi-2 binds
EcR but not USP and (ii) dMi-2 and USP contact the same
interaction domain on EcR. Simultaneous binding of dMi-2 and
USP to EcR is possibly precluded by steric hindrance.

The LBD/AF2 domain of EcR binds the ATPase domain of dMi-2.
We next mapped the EcR interaction domain on dMi-2 by
glutathione S-transferase (GST) pulldown assay. We compared
binding of in vitro translated EcR to GST-dMi-2 fusion proteins
(Fig. 5b). Previous work has established that the N- and

Input

dMi-2-FLAG

αdMi-2 dMi-2

αEcR

EcR

170

55

130

100

100

(kDa)

IP +20HEIP untreated

p53p53 1% In1% In IgGIgG dMi-2dMi-2
(kDa)

1 2 3 4 5 6 7
1 2 3 4 5 86 7

αUSP

EcR
HA-USP

dMi-2-FLAG

EcR

HA-USP

dMi-2-FLAG+
+
+

–
+
+

+
–
+

+
+
–

–
–
+

–
+
–

+
–
–

–

9 10 11 12 13 14 15 16

–
–

EcR
HA-USP

dMi-2-FLAG

EcR

HA-USP

dMi-2-FLAG
EcR
HA-USP

dMi-2-FLAG

EcR

HA-USP

dMi-2-FLAG
EcR
HA-USP

dMi-2-FLAG

EcR

HA-USP

dMi-2-FLAG
EcR
HA-USP

dMi-2-FLAG

EcR

HA-USP

dMi-2-FLAG
EcR
HA-USP

dMi-2-FLAG

EcR

HA-USP

FLAG-IP

HA-IP

+
+
+

–
+
+

+
–
+

+
+
–

–
–
+

–
+
–

+
–
–

–
–
–

+
+
+

–
+
+

+
–
+

+
+
–

–
–
+

–
+
–

+
–
–

–
–
–

+

+
+

–
+
+

+
–
+

+
+
–

–
–
+

–
+
–

+
–
–

–

–
–

+20HEUntreated

++–+–+–
+–++––+–

–
+++–+–––

1 2 3 4 5 6 7 8

17 18 19 20 21 22 23 24

33 34 35 36 37 38 39 40

25 26 27 28 29 30 31 32

+
+
+

–
+
+

+
–
+

+
+
–

–
–
+

–
+
–

+
–
–

–
–
–

41 42 43 44 45 46 47 48

dMi-2-
FLAG

FLAG-
EcR

FLAG-
EcR

+dMi-2

a b

c

Figure 4 | dMi-2 forms a complex with EcR and competes with USP for binding to EcR. (a) dMi-2 and EcR interact. Nuclear extracts from untreated

and ecdysone exposed (þ 20HE) S2 cells were immunoprecipitated with dMi-2 antibody, dp53 antibody or IgG as indicated on top (lanes 2–4 and 6–8).

1% input was loaded in lanes 1 and 5. Antibodies used for western blot analysis are indicated on the right, molecular masses on the left. (b) Sf9 cells

were infected with recombinant baculoviruses directing the expression of dMi-2-FLAG, dMi-2 or EcR-FLAG as indicated on top. Extracts were

immunoprecipitated with FLAG antibody and washed with high salt buffer. Immunoprecipitates were then analysed by SDS–PAGE and Coomassie

staining. Lane 1: molecular weight marker. Lanes 2, 4 and 6: 500 ng protein, lanes 3, 5 and 7: 1 mg protein. (c) dMi-2 and USP bind EcR in a mutually
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C-terminal regions of CHD4 and dMi-2 serve as nucleosome or
protein interaction surfaces while the ATPase domain is used for
catalytic functions15,21–26. Surprisingly, N- and C-terminal
regions showed only weak EcR-binding activity (bottom panel,
lanes 3 and 5) that was comparable to background binding
exhibited by an unrelated control protein (Lint-1 CT, lane 6). By
contrast, EcR bound strongly to the ATPase domain (lane 4).
None of the GST fusion proteins interacted with luciferase,
further demonstrating that the observed interaction is specific.
We then tested whether the isolated LBD/AF2 domain of EcR and
the ATPase domain of dMi-2 are sufficient for interaction.
We coexpressed FLAG-tagged dMi-2 ATPase domain and
EcR domains AF1 and LBD/AF2 in Sf9 cells, immunoprecipi-
tated dMi-2 and monitored interactions by western blot (Fig. 5c).
Whereas binding of AF1 was barely detectable (lane 11), the
LBD/AF2 efficiently interacted with the ATPase domain

(compare lane 6 (input) with lane 12 (IP)). This demonstrates
that LBD/AF2 and the ATPase domain are sufficient to mediate a
stable interaction between EcR and dMi-2.

EcR increases dMi-2-mediated nucleosome remodelling in vitro.
It is surprising that EcR directly contacts the dMi-2 ATPase
domain. We considered the possibility that EcR binding
modulates dMi-2 remodelling activity. To test this hypothesis, we
used the restriction enzyme accessibility assay (REA assay;27,28).
Mononucleosomes were reconstituted on a 230 bp DNA fragment
containing a so-called ‘601’ nucleosome positioning sequence.
In this nucleosome, a restriction enzyme cleavage site is protected
from digestion. Remodelling or sliding of the nucleosome makes
this site accessible resulting in DNA cleavage by a restriction
endonuclease added to the reaction (Fig. 6a). dMi-2 increases
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Figure 5 | EcR LBD/AF2 domain and dMi-2 ATPase domain interact. (a) Top: Schematic representation of EcR domain structure and deletion constructs

used for interaction assay. Bottom: Sf9 cells were infected with baculoviruses expressing dMi-2 and FLAG-tagged EcR domains as indicated on top.

Cell extracts were analysed by western blot for the expression of recombinant proteins (left panel, 1% input). Extracts were immunoprecipitated with
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fragment cleavage indicating nucleosome remodelling (Fig. 6a,
top panel: lanes 5–8; Fig. 6b, top panel). In contrast to dMi-2,
EcR on its own did not remodel the nucleosome (Fig. 6a,

top panel: lanes 9–12; Fig. 6b, top panel). However, addition of
EcR to dMi-2 resulted in significant stimulation of remodelling
(Fig. 6a, top panel: lanes 13–16; Fig. 6b, middle panel). By
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contrast, the addition of USP or BSA did not increases the
efficiency of dMi-2-mediated remodelling (Fig. 6a: lanes 17–20,
lanes 25–28; Fig. 6b, middle panel) arguing that dMi-2
remodelling activity is specifically stimulated by EcR. Given that
USP competes with dMi-2 for binding to EcR when all three
proteins are coexpressed in Sf9 cells (Fig. 4c), we tested whether
addition of USP diminishes the stimulation of dMi-2 remodelling
activity by EcR (Fig. 6a: lanes 21–24; Fig. 6b, bottom panel).
USP addition resulted in a modest but statistically significant
reduction of dMi-2 activation by EcR. We performed the same
series of remodelling experiments in the presence of 20HE
(Fig. 6a, bottom panel, Fig. 6c). In agreement with our findings
that dMi-2 binding to EcR and competition between dMi-2 and
USP for binding to EcR is independent of 20HE (Fig. 4), we also
did not find a significant effect of hormone in our in vitro
nucleosome remodelling assays.

We conclude that EcR, but not USP, increases dMi-2-mediated
nucleosome remodelling in vitro. Moreover, this effect is
counteracted by USP, presumably due to competition between
USP and dMi-2 for binding to EcR.

Discussion
Our data suggest that EcR increases dMi-2 binding to ecdysone-
induced genes. This is in agreement with previous work:
Most EIMRs within Br-C and vrille overlap or are adjacent to
experimentally determined EcR-binding regions29,30. Indeed, our
bioinformatic analysis revealed that EcR–USP-binding motifs
are greatly enriched within EIMRs. Most importantly,
dMi-2 recruitment is abrogated by EcR depletion. Taken
together with our finding that EcR physically binds dMi-2, our
results strongly suggest that EcR recruits dMi-2 to chromatin
through a direct interaction. Several of our results support the
hypothesis that dMi-2 recruitment does not involve USP. First,
we failed to detect USP in anti-dMi-2 immunoprecipitates
that contain EcR. Second, overexpression of recombinant
USP abrogates formation of an EcR-dMi-2 complex in vitro.
Third, dMi-2 and USP bind to the same interaction domain on
EcR. Fourth, depletion of EcR but not of USP reduces recruitment
of dMi-2 to chromatin, suggesting that chromatin-bound
EcR-dMi-2 complexes do not contain USP. EcR complexes that
lack USP have previously been reported: EcR heterodimerizes
with the orphan receptor Seven-Up31. However, it is unlikely
that such a complex is involved in dMi-2 recruitment given
that the LBD/AF2 domain is used as the EcR–Seven-Up
heterodimerization interface and, therefore, would not be
available for dMi-2 binding. In conclusion, our results suggest
that dMi-2 regulates transcription as part of a non-canonical
EcR–dMi-2 complex.

Ecdysone promotes formation of EcR–USP heterodimers
and increases their nuclear localization and DNA binding6.
Given that USP competes with dMi-2 for binding to EcR in vitro,
it is surprising that dMi-2 binding to ecdysone-regulated genes
increases in hormone-treated cells. We propose that ecdysone-
regulated genes are not only occupied by EcR–USP heterodimers
but, in addition, by EcR monomers and/or homodimers
(that dimerize via their DNA binding domain) and that the
number of chromatin-bound EcR monomers/homodimers
increases upon hormone exposure. As these EcR molecules
are fully capable of interacting with dMi-2, they have the potential
to recruit dMi-2 to ecdysone-regulated genes. Analysis of
mammalian nuclear receptor-mediated gene activation suggests
that this is a dynamic process which entails continuous dissocia-
tion and re-association of transcription factor complexes7,8,32,33.
It is conceivable that hormone-mediated EcR–USP binding
to DNA followed by heterodimer dissociation will generate

chromatin-associated EcR monomers/homodimers that are
available for dMi-2 binding and recruitment. Moreover,
depending on the sequence of the binding site, EcR does
not strictly require heterodimerization with USP for DNA
binding but can function as a monomer/homodimer in vitro
(Seibel, 1999 Diss. ETH No 13355). Interestingly, the human
orphan receptor ROR gamma, which binds DNA as an obligatory
monomer, interacts directly with the dMi-2 homologue CHD4
(ref. 34). This suggests that recruitment of the remodeller by
nuclear hormone receptor monomers might be a more general
principle. The notion that chromatin-bound EcR monomers/
homodimers exist in vivo is supported by recent ChIP-seq studies,
which have identified many EcR-associated genomic regions that
are apparently devoid of USP35. Furthermore, USP-deficient
animals respond to the mid-third instar ecdysone pulse with
normal activation of Br-C transcription by EcR, suggesting
that EcR can indeed regulate transcription outside of the
canonical EcR–USP heterodimer36.

Most known interactions of the EcR–USP heterodimer with
coactivators or corepressors are governed by hormone binding.
For example, ecdysone promotes formation of a complex
containing EcR and the histone methyltransferase TRR and is
required for NURF binding to EcR–USP5,37. Conversely,
hormone abrogates the association of the corepressors SMRTR
and Alien to the hormone receptor4,38. These results agree with
the bimodal switch model which postulates that activation of
hormone-dependent genes by nuclear hormone receptors is
accompanied by an exchange of corepressors for coactivators.
The complex formed by dMi-2 and EcR does not follow this
general principle: Both endogenous and recombinant dMi-2 and
EcR proteins interact irrespective of the presence of ecdysone,
suggesting that their interaction is not regulated by hormone.
Accordingly, dMi-2 is associated with ecdysone target genes and
minimizes their basal transcription levels in the absence of
hormone, when these genes are expected to be bound by
unliganded EcR. The ability of dMi-2 to retain binding to EcR in
the presence of hormone affords it with the potential to also
modulate transcription during gene activation. Thus, the
hormone-independent mode of the dMi-2-EcR interaction
allows dMi-2 to constrain transcription in both scenarios.
Our results show that dMi-2 acts as a corepressor of EcR but
its modes of action are not adequately described by the bimodal
switch model of corepressor and coactivator function.

Depletion of dMi-2 increases MNase accessibility at the
vrille gene. Although we cannot exclude the involvement of
non-histone factors, a plausible explanation for this effect is
that dMi-2 positions nucleosomes over the vrille promoter to
limit access of transcription factors and the transcription
machinery to promoter DNA. This hypothesis is consistent with
the ability of dMi-2 to remodel and reposition nucleosomes
in vitro39,40 and the propensity of dNuRD to increase histone
density at its target sequences41. The increase in chromatin
accessibility in dMi-2 depleted cells correlates with increased
transcription arguing that dMi-2-mediated chromatin alterations
help to limit the dynamic range of gene transcription. This is
reminiscent of the role of CHD4 in the early mouse embryo
where it limits the frequency of expression of lineage-specific
genes14. Furthermore, dMi-2 extensively colocalizes with active
RNA polymerase II on polytene chromosomes, suggesting that it
constrains the transcription of many genes40,42. This might reflect
a general property of this class of nucleosome remodellers.
We note that the competitive and mutually exclusive binding of
dMi-2 and USP to EcR could provide an additional repression
mechanism: displacement of USP by dMi-2 has the potential to
limit the number of EcR–USP heterodimers that can recruit
coactivators.
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The physical interaction between EcR and dMi-2 described
in this study potentially goes beyond recruiting the remodeller to
chromatin. It is possible that an EcR-bound nucleosome provides
a better substrate for dMi-2-mediated remodelling than the
nucleosome alone. However, we favour the hypothesis that
the stimulation of dMi-2 nucleosome remodelling activity
results from EcR contacting the ATPase domain of dMi-2.
Previously, the activation domain of the GAL4-VP16 transcrip-
tion factor has been demonstrated to redirect SWI/SNF complex-
mediated nucleosome sliding towards nucleosome eviction
in vitro43. However, it is not known whether this process
involves a direct interaction between the transcription factor
and the SWI2 ATPase domain. The mechanism of how
EcR might stimulate dMi-2 remodelling is currently unclear
and will require further investigation. Intramolecular inhibition
of remodelling activity and relief from this inhibition by
nucleosome binding has recently been identified as an impor-
tant regulatory principle for nucleosome remodellers. The
remodelling activity of Chd1 is inhibited by an intramolecular
interaction between its chromodomains and its ATPase
domain44. Chromodomain binding to nucleosomes disrupts this
inhibitory interaction and stimulates ATPase and remodelling
activity. ISWI remodelling activity is similarly repressed by an
intramolecular interaction between the ISWI AutoN and ATPase
domains45. In the latter case, inhibition is relieved when the
enzyme binds histone H4 tails. These mechanisms ensure that
Chd1 and ISWI acquire maximum activity when they encounter
their cognate nucleosome substrates. It is conceivable that dMi-2
remodelling activity is similarly curtailed by an inhibitory
intramolecular interaction involving its ATPase domain. Indeed,
contacts between chromodomains and ATPase domain similar
to those identified in Chd1 have been demonstrated for human
Mi-2/CHD4 (ref. 26). Similar to Chd1 and ISWI, such an
inhibitory intramolecular interaction in dMi-2 might also be
disrupted by binding to a nucleosome substrate and, in addition,
by interacting with the EcR.

Our results extend the bimodal switch model for EcR function
(Fig. 7). The EcR–USP heterodimer provides hormone-dependent
regulation of transcription as postulated by the bimodal switch
model. In addition, the alternative EcR-dMi-2 complex constrains
transcription in a hormone-independent manner. We propose

that EcR-dMi-2 complexes form in the nucleoplasm and then
bind to DNA or that EcR binds to DNA as a monomer/dimer
followed by dMi-2 recruitment. Also, dissociation of EcR–USP
heterodimers on chromatin provides additional EcR monomers
capable of recruiting Mi-2. In the presence of hormone, more
EcR and USP enter the nucleus and the amount of DNA-bound
EcR–USP increases6. This in turn would be expected to increase
the number of DNA-bound EcR monomers resulting in increased
dMi-2 chromatin association and thus would prevent an excessive
transcriptional response.

The results presented in our study reveal an unanticipated
dynamic interplay between EcR and the nucleosome remodeller
dMi-2 that involves formation of a non-canonical EcR-corepres-
sor complex, recruitment of dMi-2 to chromatin and direct
activation of its remodelling activity. The finding that the
monomeric nuclear hormone receptor ROR gamma, which
plays important roles in regulating mammalian development,
also directly binds to CHD4 (ref. 34) suggests that the
molecular mechanisms revealed in this study may have
a broader significance.

Methods
Cell and baculovirus culture. S2 and Sf9 cell lines (kind gift from Peter Becker,
Munich) were maintained at 26 �C in Schneider medium (Gibco) and Sf-900
medium (Gibco), respectively, supplemented with 10% fetal calf serum.
RNA interference, baculovirus generation and infection are described in ref. 40.
Briefly, double-stranded RNA was generated by T7 Polymerase in vitro
transcription from PCR amplimers generated with T7 promotor-containing
primers (Supplementary Table 1). Double-stranded RNAs were transfected into
S2 cells using Effectene (Qiagen). Baculoviruses were generated using the
Bac-to-bac system (Invitrogen). Baculoviruses were amplified twice and then used
to infect Sf9 cells for protein production. Cells were then harvested 48–72 h after
infection. EcR (ER33854) and USP (LD09973) cDNAs were obtained from BDGP.
Vectors for generation of baculoviruses expressing untagged EcR, N-terminally
FLAG-tagged EcR and N-terminally HA-tagged USP were generated by
PCR-cloning of the respective open-reading frames into pFastBac or pVL1392
using appropriate sets of primers. Baculoviruses and expression vectors for dLint-1
and dMi-2 were constructed in the same manner46,47.

Western blot. Western blots were carried out by speparating proteins with
SDS–polyacrylamide gel electrophoresis (SDS–PAGE) and electroblotting onto
activated polyvinylidene difluoride membranes in Blotting Buffer (20 mM Tris,
192 mM glycin, 20% methanol, 0.02% SDS). Membranes were then incubated in
Blocking Buffer (PBS, 0.1% Tween 20, 5% non-fat dry milk) for 1 h at room
temperature followed by an overnight incubation in blocking buffer with
appropriate primary antibody (see below) at 4 �C. Membranes were washed three
times for 5 min in Washing Buffer (PBS, 0.1% Tween 20) and then incubated in
blocking buffer containing the appropriate secondary antibody Anti-Mouse
IgG (Horseradish Peroxidase-Linked Species-Specific Whole Antibody from sheep;
Amersham, NA931; 1:20.000) or Anti-rabbit IgG (Horseradish Peroxidase-Linked
Species-Specific Whole Antibody, from donkey; Amersham, NA934; 1:20.000) for
2 h at room temperature before a final wash cycle (3 times, 5 min). Western blot
signals were visualized by chemiluminescence using the Immobilon Western
Chemiluminescence HRP substrate (Millipore, WBKLS0500). The following
primary antibodies were used: Rabbit polyclonal anti-dMi-2 antibody
(custom made, 10 mg ml� 1, 1:10,000), beta-Tubulin antibody (KMX-1; Millipore,
MAB3408, 0.5 mg ml� 1; 1:15,000), FLAG (Sigma, F7425, 8 mg ml� 1; 1:5,000),
USP antibody (Abcam, ab106341, 0.2 mg ml� 1; 1:2,000) and EcR antibody
(DHSB, DDA2.7, 0.014 mg ml� 1; 1:1,000). Uncropped versions of western blots
are shown in Supplementary Fig. 4.

Preparation of recombinant proteins and interaction assays. GST fusion
proteins were expressed from pGEX4T1 expression vectors (Invitrogen) in frame
with a N-terminal GST-tag. Vectors were transformed into Escherichia coli BL21.
In all, 500 ml cultures in liquid medium were incubated at 37 �C to an OD600 of
0.6–0.7. Temperature was reduced to 18 �C prior to induction with 0.1 mM IPTG.
Expression was continued overnight. Cells were harvested by centrifugation
(1,000 g, Heraeus Cryofuge 5,000) and resuspended in 30 ml PBS containing
1% (v/v) Triton X-100. After sonication (10� 12 s, 25% output), cell debris was
pelleted by centrifugation (30 min at 26,800g at 4 �C (Sorvall RC-5B, SS34 rotor).
Clear supernatant was bound to 500 ml of prewashed Glutathione Sepharose 4 Fast
Flow (GE Healthcare) for 2 h on a rotating wheel at 4 �C. Beads were washed
five times with 10 ml PBS containing 1% (v/v) Triton X-100, resuspended in
PBS containing 40% (v/v) Glycerol and stored at � 20 �C. 35S-labelled EcR was
synthesized using the TNT Quick Coupled Reticulocyte Transcription/Translation
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EcR EcR EcR EcR

EcRdMi-2

dMi-2
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Figure 7 | Model. Model detailing hormone-dependent (bimodal switch

model) and hormone-independent modes of gene regulation by EcR.

EcR can heterodimerize with either dMi-2 or USP. EcR–USP heterodimers

recruit corepressor (CoR) or coactivator (CoA) complexes in a hormone-

dependent manner. dMi-2 recruitment is independent of hormone. dMi-2

binds to EcR monomers or homodimers in solution (left) or DNA-bound

EcR monomers/homodimers that are generated by monomer/homodimer

binding to DNA (middle) or by dissociation of DNA-bound EcR–USP

heterodimer (right). EcR activates dMi-2 nucleosome remodelling activity.
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System (Promega). Full-length EcR and EcR fragments were cloned into
the pING14A vector under control of a T7 RNA polymerase promoter. The
IVT reaction (12.5 ml rabbit reticulocyte lysate, 1 ml reaction buffer, 0.5 ml T7
RNA polymerase, 0.5 ml amino acid mixture without methionine, 1 ml
35S-methionine (41,000 Ci per mmol at 10 mCi per ml, Hartmann Analytic),
0.5 ml RiboLock RNase Inhibitor (Thermo Scientific), 2 ml DNA template (0.5 mg
per ml) and 7 ml nuclease-free double distilled water (Ambion)) was incubated at
30 �C for 90 min.

The reaction was then diluted in GST pulldown buffer (25 mM Hepes, pH 7.6,
150 mM NaCl, 12.5 mM MgCl2, 0.1% (v/v) NP-40, 0.1 mM DTT) and incubated
with 2 mg GST-fusion protein bound to glutathione beads for 2 h at 4 �C on
a rotating wheel. Beads were collected by centrifugation and washed five times
with 1 ml of GST pulldown buffer for 5 min at 4 �C. Proteins were eluted by boiling
in SDS–PAGE loading buffer and subjected to SDS–PAGE. Gels were fixed with
fixing solution (25% (v/v) isopropanol, 10% (v/v) acetic acid), treated with Amplify
(GE Healthcare) for 30 min at room temperature and dried. Dried gels were
exposed to a SuperRX Fuji Medical X-ray film.

Whole-cell lysates of infected Sf9 were prepared by three freeze/thaw cycles in
Lysis Buffer (20 mM Hepes, pH 7.6, 200 mM KCl, 0.1% NP40, 10% glycerol).
Lysates were cleared by centrifugation. Immunoprecipitation of FLAG- and
HA-tagged proteins from these lysates were carried out using immobilized
antibodies (100 ml of 8 mg per ml FLAG agarose (Sigma, A2220), 100 ml of 2.1 mg
per ml HA agarose (Sigma, A2095))16,47.

Antibody beads were incubated with Sf9 whole-cell extracts for 4 h at 4 �C.
Beads were then washed five times with Lysis Buffer. For copurification of
EcR-dMi-2 complexes, FLAG agarose beads were washed with high salt buffer
instead (20 mM Hepes, pH 7.6, 1000 mM KCl, 0.1% NP40, 10% glycerol).

Nuclear extract preparation and immunoprecipitations. S2 cells were harvested,
washed twice in PBS and resuspended in an appropriate volume (1 ml per 75 cm2

flask) of low salt buffer (10 mM Hepes KOH, pH 7.6, 1.5 mM MgCl2, 10 mM KCl,
0.1 mM DTT). After incubation on ice for 10 min, cells were collected by
centrifugation at 14,800g for 1 min at 4 �C. The supernatant was removed and
the remaining nuclear fraction was resuspended in an appropriate volume
(200 ml per 75 cm2 flask) of high salt buffer (20 mM Hepes KOH, pH 7.6, 1.5 mM
MgCl2, 420 mM NaCl, 0.2 mM EDTA, 20% (v/v) Glycerol, 0.1 mM DTT). The
suspension was incubated for 20 min on ice and subsequently centrifuged at
14,800g for 30 min at 4 �C. The supernatant (nuclear extract) was aliquotted, frozen
in liquid nitrogen and stored at � 80 �C (refs 16,47). For immunoprecipitation
of endogenous Mi-2, Protein G Sepharose was preincubated for 1 h with 1% fish
skin gelatin and buffer D (0.2 mg per ml BSA in 20 mM Hepes KOH, pH 7.6
100 mM KCl 1.5 mM MgCl2, 0.2 mM EDTA, 20% (v/v) glycerol, 0.1 mM DTT,
protease inhibitors) at room temperature. In all, 2 mg of appropriate antibody
(rat monoclonal anti-dMi-2 antibody (4D8; custom made, 0.5 mg per ml) or rat
monoclonal dp53 antibody (7A11; custom made, 0.5 mg per ml) was incubated
with preblocked Protein G sepharose for 1 h at 4 �C. Antibody-loaded beads were
washed twice with buffer D containing 0.02% NP40 and transferred to low-binding
tubes. A total of 30ml of antibody-loaded beads were then incubated with 500 mg
nuclear extract for 3 h at 4 �C. The beads were washed five times with buffer
D containing 0.02% NP40, eluted with 40 ml 2� SDS loading buffer and subjected
to SDS–PAGE and western blot.

qRT–PCR. Total RNA from S2 cells was isolated using the peqGOLD total RNA kit
(Peqlab). In all, 1.5 mg of RNA was reverse transcribed with 0.5 mg Oligo(T)17
primer and 100 U M-MLV reverse transcriptase (Invitrogen). cDNA was analysed
by qPCR using gene-specific primers (Supplementary Table 2). All amplifications
were performed in triplicates. Triplicate mean values were calculated according
to the DDCT quantification method using Rp49 transcription as normalization
reference. S.d. were calculated from triplicates, error bars are indicated accordingly.
Relative mRNA levels in GFP RNAi-treated S2 cells were set to 1 and other values
were expressed relative to this.

ChIP-qPCR and ChIP–Seq. ChIP-qPCRs were performed by crosslinking
of cells with formaldehyde (1% v/v), lysis, sonication, reversal of crosslinks,
DNA purification and quantitative PCR47. A total of 108 S2 cells in culture medium
were fixed with 1% (v/v) formaldehyde (10% methanol free stock, Polysciences,
04018-1) for 10 min at room temperature (RT). Fixation was quenched with a final
concentration of 240 mM glycine. Cells were harvested, washed twice in ice cold
PBS, resuspended in 1 ml ChIP lysis buffer (50 mM Tris, pH 8.0, 10 mM EDTA,
1% (w/v) SDS) and incubated for 10 min on ice. Samples were sonicated with
a Bioruptor (Diagenode) twice for 10 min with 30 s on–off cycles at high
power. Samples were centrifuged at 14,800g for 15 min at 4 �C. The supernatant
(chromatin) was diluted 10-fold in ChIP IP buffer (16.7 mM Tris, pH 8.0, 16.7 mM
NaCl, 1.2 mM EDTA, 0.01% (w/v) SDS, 1.1% (w/v) Triton X-100). In all, 130 ml of
chromatin were diluted 1:10 in ChIP IP buffer and precleared by the addition of
80ml Protein A beads (GE Healthcare) for 30 min at 4 �C on a rotating wheel. The
supernatant was collected, 13 ml were removed and stored at 4 �C (input control).
A total of 2 ml rabbit polyclonal anti-dMi-2 antibody (custom made, 10 mg per ml)
was added and the sample was incubated overnight at 4 �C on a rotating wheel.
In all, 35ml of 1:1 slurry of Protein A beads was added and incubation was

continued for 2 h at 4 �C on a rotating wheel. The sample were repeatedly washed
(three times with low salt buffer (20 mM Tris, pH 8.0, 2 mM EDTA, 0.1% (w/v)
SDS, 1% (v/v) Triton X-100), three times with high salt buffer (same as low salt
buffer plus 500 mM NaCl), once with LiCl buffer (10 mM Tris, pH 8.0, 250 mM
LiCl, 1 mM EDTA, 1% (w/v) SDS, 1% (v/v) NP-40 and twice with TE buffer
(10 mM Tris, pH 8.0, 0.1 mM EDTA)) for 10 min on a rotating wheel and the beads
were collected by centrifugation at 1,200g for 4 min. With the last TE buffer wash,
beads were transferred into fresh reaction tubes for elution. Elution was performed
twice with 250 ml ChIP elution buffer (1% (w/v) SDS, 0.1 M NaHCO3) for 20 min
at RT. Crosslinks were reversed the addition of 20 ml of 5 M NaCl and incubation
at 65 �C overnight. Proteins were digested with 2 ml Proteinase K (Roth, 7528.1;
10 mg per ml) in 20 ml 1 M Tris, pH 6.5 for 1 h a 45 �C. Precipitated DNA was
purified using the QIAquick PCR Purification Kit (Qiagen). See Supplementary
Table 3 for ChIP-qPCR primers. ChIP–Seq was carried out on an Illumina Genome
Analyzer IIx according to the manufacturer’s instructions. Raw Illumina sequence
reads were counted using a bloom filter and aligned to the D. melanogaster genome
(Ensembl 75) with Bowtie 2 version 2.0.0-beta7 (ref. 48) using default options,
yielding 6,732,092 and 9,422,152 usable reads for two ‘þ Ecdysone’ replicates and
14,989,665 and 14,992,427 usable reads for two ‘� Ecdysone’ replicates. Peak
calling was performed with MACS49 (1.4.0rc2 20110214 (Valentine)) using the
settings: non-default mfold¼ 8.30 and off-auto¼True. Gene annotation was
obtained from Ensembl revision 75. Transcription start sites were extracted from
Ensembl transcript annotations to include internal transcription start sites. For
normalization of lanes, read counts were normalized to 1 million uniquely
mapping reads and peaks were classified as different when they had a
‘þ Ecdysone’/‘� Ecdysone’ tag count ratio of at least 2.3. Furthermore, peaks were
considered to overlap when they shared at least 1 bp.

MNase analysis. The MNase protection assay was performed as described in
ref. 50. Briefly, cells were crosslinked by the addition of 10� MNase cross-linking
buffer (50 mM Tris pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA,
3.3% (v/v) methanol-free formaldehyde) to a final concentration of 1� for 1 min
at room temperature. The reaction was quenched by the addition of glycine
(final concentration 125 mM) and chromatin was prepared. Chromatin was
digested with MNase. The amount of MNase necessary to digest most of the
chromatin to mononucleosomes was determined empirically for each new batch
of MNase by titration. See Supplementary Table 4 for qPCR primers used.
All qPCR values were normalized to values obtained with a corresponding
undigested sample.

Restriction enzyme accessibility assay. REA assay was carried out as
described28. Briefly, remodelling reactions were carried out on a 32P-labelled
mononucleosome. In this mononucleosome, the histone octamer occupies
a 601-positioning sequence containing a MfeI restriction site. The nucleosome
protects this site from digestion by MfeI. REA reactions in the presence of
MfeI were initiated by the addition of 32P-labelled nucleosomes. Aliquots were
removed at various times and quenched in 1.5 volumes of 10% glycerol,
70 mM EDTA, 20 mM Tris (pH 7.7), 2% SDS, 0.2 mg per ml xylene cyanole and
bromophenol blue. The samples were deproteinized by proteinase K digestion and
DNA fragments were separated on native polyacrylamide gels.

Immunofluorescence. Drosophila larvae were cultured at 26 �C. Third instar
larvae were washed and salivary glands were dissected in PBS. Dissected glands
were fixed for 5 min at room temperature in Fixing Solution (45% acetic acid,
1% formaldehyde) on a siliconized cover slip. Each glass slide was immediately
frozen in liquid nitrogen, the coverslip was removed with a scalpel and the glass
slide was collected into a Coplin jar prefilled with PBS. Collected glass slides were
washed with PBS for 10 min while rotating. PBS was replaced by blocking solution
(5% non-fat dry milk in PBS) and gentle rotation was continued for 30 min.
Slides were rinsed in PBS, placed in a humid chamber and squashed polytene
chromosomes were covered with 40 ml of primary antibody (rat monoclonal
anti-dMi-2 (4D8; custom made, 0.5 mg ml� 1; 1:200) or rabbit anti-ISWI antibody
(kind gift from Carl Wu, 10 mg ml� 1; 1:200)18,46 and a fresh cover slip. All
antibodies were diluted in 5% milk in PBS and 2% normal goat serum to reduce
unspecific binding of antibodies. Primary antibodies were incubated overnight at
40 �C. Glass slides were rinsed in PBS and washed three times in 5% milk in PBS
for 5 min. Polytene chromosomes were incubated with the appropriate secondary
antibodies (anti-rabbit Alexa488; 1:200 (Invitrogen) or anti-rat Alexa546;
1:200 (Invitrogen)) diluted in 5% milk/PBS/2% NGS for 1 h at RT in the dark.
Slides were washed twice for 10 min with Buffer A (PBS plus 300 mM NaCl,
0.2% (v/v) NP-40, 0.2% (v/v) Tween-20) and B (PBS plus 400 mM NaCl, 0.2% (v/v)
NP-40, 0.2% (v/v) Tween-20), rinsed in PBS and DNA was stained with
DAPI (0.2 mg ml� 1 in PBS) for 4–5 min. Slides were washed once for 10 min
in PBS, mounted with Fluoromount, sailed with nail polish and stored at
4 �C in the dark.

Data availability. ChIP-seq data are available at www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-4577, under the accession code E-MTAB-4577. All other
data are available from the authors upon reasonable request.
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