18 research outputs found

    Thinking Materially: Cognition as Extended and Enacted

    Get PDF
    Human cognition is extended and enacted. Drawing the boundaries of cognition to include the resources and attributes of the body and materiality allows an examination of how these components interact with the brain as a system, especially over cultural and evolutionary spans of time. Literacy and numeracy provide examples of multigenerational, incremental change in both psychological functioning and material forms. Though we think materiality, its central role in human cognition is often unappreciated, for reasons that include conceptual distribution over multiple material forms, the unconscious transparency of cognitive activity in general, and the different temporalities of metaplastic change in neurons and cultural forms

    Finger-counting and numerical structure

    Get PDF
    Number systems differ cross-culturally in characteristics like how high counting extends and which number is used as a productive base. Some of this variability can be linked to the way the hand is used in counting. The linkage shows that devices like the hand used as external representations of number have the potential to influence numerical structure and organization, as well as aspects of numerical language. These matters suggest that cross-cultural variability may be, at least in part, a matter of whether devices are used in counting, which ones are used, and how they are used

    On Tools Making Minds: an Archaeological Perspective on Human Cognitive Evolution

    Get PDF
    Using a model of cognition as extended and enactive, we examine the role of materiality in making minds as exemplified by lithics and writing, forms associated with conceptual thought and meta-awareness of conceptual domains. We address ways in which brain functions may change in response to interactions with material forms, the attributes of material forms that may cause such change, and the spans of time required for neurofunctional reorganization. We also offer three hypotheses for investigating co-influence and change in cognition and material culture.publishedVersio

    The cultural challenge in mathematical cognition

    Get PDF
    In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. [2016]. Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41) defined a research agenda through 26 specific research questions. An important dimension of mathematical cognition almost completely absent from their discussion is the cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines – including anthropology, archaeology, cognitive science, history of science, linguistics, philosophy, and psychology – we argue that for any research agenda on mathematical cognition the cultural dimension is indispensable, and we propose a set of exemplary research questions related to it

    Book review: Cultural Development of Mathematical Ideas, written by Geoffrey B. Saxe

    No full text
    A review of Geoffrey B. Saxe, Cultural Development of Mathematical Ideas. Saxe offers a comprehensive treatment of social and linguistic change in the number systems used for economic exchange in the Oksapmin community of Papua New Guinea. By taking the cognition-is-social approach, Saxe positions himself within emerging perspectives that view cognition as enacted, situated, and extended. The approach is somewhat risky in that sociality surely does not exhaust cognition. Brains, bodies, and materiality also contribute to cognition—causally at least, and possibly constitutively as well (as argued by Clark & Chalmers; Renfrew & Malafouris). This omission necessarily excludes the material dimension of numeracy

    Material Scaffolds in Numbers and Time

    No full text
    corecore