71 research outputs found

    Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva

    Get PDF
    Background: Ultrafine particles (< 100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Methods: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Results: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+ 28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI: 10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Conclusions: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva

    Children’s screen time alters the expression of saliva extracellular miR-222 and miR-146a

    Get PDF
    An imbalance between energy uptake and energy expenditure is the most important reason for increasing trends in obesity starting from early in life. Extracellular miRNAs are expressed in all bodily fluids and their expression is influenced by a broad range of stimuli. We examined whether screen time, physical activity and BMI are associated with children's salivary extracellular miR-222 and miR-146a expression. In 80 children the extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We studied the association between children's salivary extracellular miRNA expression and screen time, physical activity and BMI using mixed models, while accounting for potential confounders. We found that higher screen time was positively associated with salivary extracellular miR-222 and miR-146a levels. On average, one hour more screen time use per week was associated with a 3.44% higher miR-222 (95% CI: 1.34 to 5.58; p = 0.002) and 1.84% higher miR-146a (95% CI: -0.04 to 3.75; p = 0.055) level in saliva. BMI and physical activity of the child were not significantly associated with either miR-222 or miR-146a. A sedentary behaviour, represented by screen time use in children, is associated with discernible changes in salivary expression of miR-146a and or miR-222. These miRNA targets may emerge attractive candidates to explore the role of these exposures in developmental processes of children's health

    A Co-expression Analysis of the Placental Transcriptome in Association With Maternal Pre-pregnancy BMI and Newborn Birth Weight

    Get PDF
    Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 Ă— 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming

    Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women

    Get PDF
    BACKGROUND: Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. OBJECTIVES: Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. METHODS: Microarray analyses were performed in 98 healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM(10) in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women). Pathway analysis was performed using Gene Set Enrichment Analysis. Average daily PM(2.5) and PM(10) exposures over 2-years were estimated for each participant’s residential address using spatiotemporal interpolation in combination with a dispersion model. RESULTS: Average long-term PM(10) was 25.9 (± 5.4) and 23.7 (± 2.3) μg/m(3) in the discovery and validation cohorts, respectively. In discovery analysis, associations between PM(10) and the expression of individual genes differed by sex. In the validation cohort, long-term PM(10) was associated with the expression of DNAJB5 and EAPP in men and ARHGAP4 (p = 0.053) in women. AKAP6 and LIMK1 were significantly associated with PM(10) in women, although associations differed in direction between the discovery and validation cohorts. Expression of the eight candidate genes in the discovery cohort differentiated between validation cohort participants with high versus low PM(10) exposure (area under the receiver operating curve = 0.92; 95% CI: 0.85, 1.00; p = 0.0002 in men, 0.86; 95% CI: 0.76, 0.96; p = 0.004 in women). CONCLUSIONS: Expression of the sex-specific candidate genes identified in the discovery population predicted PM(10) exposure in an independent cohort of adults from the same area. Confirmation in other populations may further support this as a new approach for exposure assessment, and may contribute to the discovery of molecular mechanisms for PM-induced health effects. CITATION: Vrijens K, Winckelmans E, Tsamou M, Baeyens W, De Boever P, Jennen D, de Kok TM, Den Hond E, Lefebvre W, Plusquin M, Reynders H, Schoeters G, Van Larebeke N, Vanpoucke C, Kleinjans J, Nawrot TS. 2017. Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women. Environ Health Perspect 125:660–669; http://dx.doi.org/10.1289/EHP37

    Placental hypoxia-regulating network in relation to birth weight and ponderal index: the ENVIRONAGE Birth Cohort Study

    No full text
    Abstract Background HIF1α, miR-210 and its downstream targets ISCU, COX-10, RAD52 and PTEN are all part of the placental hypoxia-responsive network. Tight regulation of this network is required to prevent development of maternal–fetal complications such as fetal growth restriction. HIF1α expression is increased in preeclamptic placentae, but little is known about its association with birth weight in normal pregnancies. Methods We measured placental levels of HIF1α, miR-20a, miR-210, ISCU, COX-10, RAD52 and PTEN in 206 mother–newborn pairs of the ENVIRONAGE birth cohort. Results Placental HIF1α gene expression was inversely associated with the ponderal index (PI): for a doubling in placental HIF1α expression, PI decreased by 6.7% (95% confidence interval [CI] 1.3 to 12.0%, p = 0.01). Placental RAD52 expression also displayed an inverse association with PI, a doubling in gene expression was associated with a 6.2% (CI 0.2 to 12.1% p = 0.04) decrease in PI. As for birth weight, we observed a significant association with placental miR-20a expression only in boys, where a doubling in miR-20a expression is associated with a 54.2 g (CI 0.6 to 108 g, p = 0.05) increase in birth weight. Conclusions The decrease in fetal growth associated with expression of hypoxia-network members HIF1a, RAD52 and miR-20a indicates that this network is important in potential intrauterine insults

    Sex-specific associations between telomere length and candidate miRNA expression in placenta

    No full text
    BACKGROUND: In the early-life environment, proper development of the placenta is essential for both fetal and maternal health. Telomere length at birth has been related to life expectancy. MicroRNAs (miRNAs) as potential epigenetic determinants of telomere length at birth have not been identified. In this study, we investigate whether placental miRNA expression is associated with placental telomere length at birth. METHODS: We measured the expression of seven candidate miRNAs (miR-16-5p, -20a-5p, -21-5p, -34a-5p, 146a-5p, -210-3p and -222-3p) in placental tissue at birth in 203 mother-newborn (51.7% girls) pairs from the ENVIRONAGE birth cohort. We selected miRNAs known to be involved in crucial cellular processes such as inflammation, oxidative stress, cellular senescence related to aging. Placental miRNA expression and relative average placental telomere length were measured using RT-qPCR. RESULTS: Both before and after adjustment for potential covariates including newborn's ethnicity, gestational age, paternal age, maternal smoking status, maternal educational status, parity, date of delivery and outdoor temperature during the 3rd trimester of pregnancy, placental miR-34a, miR-146a, miR-210 and miR-222 expression were significantly (p ≤ 0.03) and positively associated with placental relative telomere length in newborn girls. In newborn boys, only higher expression of placental miR-21 was weakly (p = 0.08) associated with shorter placental telomere length. Significant miRNAs explain around 6-8% of the telomere length variance at birth. CONCLUSIONS: Placental miR-21, miR-34a, miR-146a, miR-210 and miR-222 exhibit sex-specific associations with telomere length in placenta. Our results indicate miRNA expression in placental tissue could be an important determinant in the process of aging starting from early life onwards.status: publishe

    Sex-specific associations between telomere length and candidate miRNA expression in placenta

    No full text
    Abstract Background In the early-life environment, proper development of the placenta is essential for both fetal and maternal health. Telomere length at birth has been related to life expectancy. MicroRNAs (miRNAs) as potential epigenetic determinants of telomere length at birth have not been identified. In this study, we investigate whether placental miRNA expression is associated with placental telomere length at birth. Methods We measured the expression of seven candidate miRNAs (miR-16-5p, -20a-5p, -21-5p, -34a-5p, 146a-5p, -210-3p and -222-3p) in placental tissue at birth in 203 mother-newborn (51.7% girls) pairs from the ENVIRONAGE birth cohort. We selected miRNAs known to be involved in crucial cellular processes such as inflammation, oxidative stress, cellular senescence related to aging. Placental miRNA expression and relative average placental telomere length were measured using RT-qPCR. Results Both before and after adjustment for potential covariates including newborn’s ethnicity, gestational age, paternal age, maternal smoking status, maternal educational status, parity, date of delivery and outdoor temperature during the 3rd trimester of pregnancy, placental miR-34a, miR-146a, miR-210 and miR-222 expression were significantly (p ≤ 0.03) and positively associated with placental relative telomere length in newborn girls. In newborn boys, only higher expression of placental miR-21 was weakly (p = 0.08) associated with shorter placental telomere length. Significant miRNAs explain around 6–8% of the telomere length variance at birth. Conclusions Placental miR-21, miR-34a, miR-146a, miR-210 and miR-222 exhibit sex-specific associations with telomere length in placenta. Our results indicate miRNA expression in placental tissue could be an important determinant in the process of aging starting from early life onwards
    • …
    corecore