18 research outputs found

    Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    Get PDF
    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases

    Nascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts

    Get PDF
    Fibroblast migration involves complex mechanical interactions with the underlying substrate. Although tight substrate contact at focal adhesions has been studied for decades, the role of focal adhesions in force transduction remains unclear. To address this question, we have mapped traction stress generated by fibroblasts expressing green fluorescent protein (GFP)-zyxin. Surprisingly, the overall distribution of focal adhesions only partially resembles the distribution of traction stress. In addition, detailed analysis reveals that the faint, small adhesions near the leading edge transmit strong propulsive tractions, whereas large, bright, mature focal adhesions exert weaker forces. This inverse relationship is unique to the leading edge of motile cells, and is not observed in the trailing edge or in stationary cells. Furthermore, time-lapse analysis indicates that traction forces decrease soon after the appearance of focal adhesions, whereas the size and zyxin concentration increase. As focal adhesions mature, changes in structure, protein content, or phosphorylation may cause the focal adhesion to change its function from the transmission of strong propulsive forces, to a passive anchorage device for maintaining a spread cell morphology

    Cancer Cell Invasion Is Enhanced by Applied Mechanical Stimulation

    Get PDF
    Metastatic cells migrate from the site of the primary tumor, through the stroma, into the blood and lymphatic vessels, finally colonizing various other tissues to form secondary tumors. Numerous studies have been done to identify the stimuli that drive the metastatic cascade. This has led to the identification of multiple biochemical signals that promote metastasis. However, information on the role of mechanical factors in cancer metastasis has been limited to the affect of compliance. Interestingly, the tumor microenvironment is rich in many cell types including highly contractile cells that are responsible for extensive remodeling and production of the dense extracellular matrix surrounding the cancerous tissue. We hypothesize that the mechanical forces produced by remodeling activities of cells in the tumor microenvironment contribute to the invasion efficiency of metastatic cells. We have discovered a significant difference in the extent of invasion in mechanically stimulated verses non-stimulated cell culture environments. Furthermore, this mechanically enhanced invasion is dependent upon substrate protein composition, and influenced by topography. Finally, we have found that the protein cofilin is needed to sense the mechanical stimuli that enhances invasion. We conclude that other types of mechanical signals in the tumor microenvironment, besides the rigidity, can enhance the invasive abilities of cancer cells in vitro. We further propose that in vivo, non-cancerous cells located within the tumor micro-environment may be capable of providing the necessary mechanical stimulus during the remodeling of the extracellular matrix surrounding the tumor

    Integrins, CAFs and Mechanical Forces in the Progression of Cancer

    No full text
    Cells respond to both chemical and mechanical cues present within their microenvironment. Various mechanical signals are detected by and transmitted to the cells through mechanoreceptors. These receptors often contact with the extracellular matrix (ECM), where the external signals are converted into a physiological response. Integrins are well-defined mechanoreceptors that physically connect the actomyosin cytoskeleton to the surrounding matrix and transduce signals. Families of α and β subunits can form a variety of heterodimers that have been implicated in cancer progression and differ among types of cancer. These heterodimers serve as the nexus of communication between the cells and the tumor microenvironment (TME). The TME is dynamic and composed of stromal cells, ECM and associated soluble factors. The most abundant stromal cells within the TME are cancer-associated fibroblasts (CAFs). Accumulating studies implicate CAFs in cancer development and metastasis through their remodeling of the ECM and release of large amounts of ECM proteins and soluble factors. Considering that the communication between cancer cells and CAFs, in large part, takes place through the ECM, the involvement of integrins in the crosstalk is significant. This review discusses the role of integrins, as the primary cell-ECM mechanoreceptors, in cancer progression, highlighting integrin-mediated mechanical communication between cancer cells and CAFs

    An in vitro correlation of metastatic capacity and dual mechanostimulation.

    No full text
    Cells are under the influence of multiple forms of mechanical stimulation in vivo. For example, a cell is subjected to mechanical forces from tissue stiffness, shear and tensile stress and transient applied strain. Significant progress has been made in understanding the cellular mechanotransduction mechanisms in response to a single mechanical parameter. However, our knowledge of how a cell responds to multiple mechanical inputs is currently limited. In this study, we have tested the cellular response to the simultaneous application of two mechanical inputs: substrate compliance and transient tugging. Our results suggest that cells within a multicellular spheroid will restrict their response to a single mechanical input at a time and when provided with two mechanical inputs simultaneously, one will dominate. In normal and non-metastatic mammary epithelial cells, we found that they respond to applied stimulation and will override substrate compliance cues in favor of the applied mechanical stimulus. Surprisingly, however, metastatic mammary epithelial cells remain non-responsive to both mechanical cues. Our results suggest that, within our assay system, metastatic progression may involve the down-regulation of multiple mechanotransduction pathways
    corecore