6 research outputs found

    Intrusion Detection and Anomaly Detection System Using Sequential Pattern Mining

    Full text link
    Nowadays the security methods from password protected access up to firewalls which are used to secure the data as well as the networks from attackers. Several times these type of security methods are not enough to protect data. We can consider the use of Intrusion Detection Systems (IDS) is the one way to secure the data on critical systems. Most of the research work is going on the effectiveness and exactness of the intrusion detection, but these attempts are for the detection of the intrusions at the operating system and network level only. It is unable to detect the unexpected behavior of systems due to Malicious transactions in databases. The method used for spotting any interferes on the information in the form of database known as database intrusion detection. It relies on enlisting the execution of a transaction. After that, if the recognized pattern is aside from those regular patterns actual is considered as an intrusion. But the identified problem with this process is that the accuracy algorithm which is used may not identify entire patterns. This type of challenges can affect in two ways. 1) Missing of the database with regular patterns. 2) The detection process neglects some new patterns. Therefore we proposed sequential data mining method by using new Modified Apriori Algorithm. The algorithm upturns the accurateness and rate of pattern detection by the process. The Apriori algorithm with modifications is used in the proposed model

    Effect of temperature on the surface free energy and acid–base properties of Gabapentin and Pregabalin drugs - a comparative study

    No full text
    The surface energetics of Gabapentin (GBP) [2-[1-(aminomethyl) cyclohexyl] acetic acid] and Pregabalin (PGB) [(S)-3-(aminomethyl)-5-methylhexanoic acid] were studied using a surface energy analyzer (SEA); a new-generation inverse gas chromatography technique, in the temperature range of 298.15–323.15 K. The Lifshitz–van der Waals dispersive (γds) component of the surface energy was calculated using Schultz and Dorris-Gray methods. The specific free energy of adsorption (ΔGspa) and specific component of surface free energy (γsps) were determined using Schultz and Polarization methods. For both the drugs, the γds component of the surface energy was found to decrease with the increase in temperature. The γds component of the surface energy obtained for GBP and PGB surfaces suggested that GBP is slightly more energetically active than PGB. However, the PGB surface showed slightly higher γsps implying its more polar nature as compared to GBP. These drugs with different structures but identical functional groups (–NH2 and –COOH), were found to have a higher surface Lewis base parameter, (Kb), indicating predominately basic surfaces. Furthermore, the temperature dependence of the Lewis acid–base parameters for these drugs was attributed to the disruption of intramolecular hydrogen bonding at higher temperatures.by S. Ramanaiah, Vikram Karde, P. Venkateswarlua and Chinmay Ghoro

    Influences of Crystal Anisotropy in Pharmaceutical Process Development

    No full text
    Crystalline materials are of crucial importance to the pharmaceutical industry, as a large number of APIs are formulated in crystalline form, occasionally in the presence of crystalline excipients. Owing to their multifaceted character, crystals were found to have strongly anisotropic properties. In fact, anisotropic properties were found to be quite important for a number of processes including milling, granulation and tableting. An understanding of crystal anisotropy and an ability to control and predict crystal anisotropy are mostly subjects of interest for researchers. A number of studies dealing with the aforementioned phenomena are grounded on over-simplistic assumptions, neglecting key attributes of crystalline materials, most importantly the anisotropic nature of a number of their properties. Moreover, concepts such as the influence of interfacial phenomena in the behaviour of crystalline materials during their growth and in vivo, are still poorly understood. The review aims to address concepts from a molecular perspective, focusing on crystal growth and dissolution. It begins with a brief outline of fundamental concepts of intermolecular and interfacial phenomena. The second part discusses their relevance to the field of pharmaceutical crystal growth and dissolution. Particular emphasis is given to works dealing with mechanistic understandings of the influence of solvents and additives on crystal habit. Furthermore, comments and perspectives, highlighting future directions for the implementation of fundamental concepts of interfacial phenomena in the rational understanding of crystal growth and dissolution processes, have been provided.by Eftychios Hadjittofis,Mark Antonin Isbell, Vikram Karde,Sophia Varghese,Chinmay Ghoroi and Jerry Y. Y. Hen

    B. Sprachwissenschaft.

    No full text
    corecore