177 research outputs found
Improvement of Type 2 Diabetes Mellitus in Obese and Non-Obese Patients after the Duodenal Switch Operation
Introduction. Type 2 diabetes mellitus (T2DM) is one of the most important obesity-related comorbidities. This study was undertaken to characterise the effect of the biliopancreatic diversion with duodenal switch (BPD-DS) in morbidly obese and nonmorbidly obese diabetic patients. Methods. Outcome of 74 obese diabetic patients after BPD-DS and 16 non-obese diabetic patients after BPD or gastric bypass surgery was evaluated. Insulin usage, HbA1c-levels, and index of HOMA-IR (homeostasis model assessment of insulin resistence) were measured. Results. A substantial fraction of patients is free of insulin and shows an improved insulin sensitivity early after the operation, another fraction gets free of insulin in a 12-month period after the operation and a small fraction of long-term insulin users will not get free of insulin but nevertheless shows an improved metabolic status (less insulin needed, normal HbA1c-levels). Conclusion. BPD-DS leads to an improvement of T2DM in obese and non-obese patients. Nevertheless, more data is needed to clarify indications and mechanisms of action and to adjust our operation techniques to the needs of non-obese diabetic patients
Influence of Sleeve Gastrectomy on NASH and Type 2 Diabetes Mellitus
Background. Nonalcoholic fatty liver disease is present in up to 85% of adipose patients and may proceed to nonalcoholic steatohepatitis (NASH). With insulin resistance and obesity being the main risk factors for NASH, the effect of isolated sleeve gastrectomy (ISG) on these parameters was examined. Methods. 236 patients underwent ISG with intraoperative liver biopsy from December 2002 to September 2009. Besides demographic data, pre-operative weight/BMI, HbA1c, AST, ALT, triglycerides, HDL and LDL levels were determined. Results. A significant correlation of NASH with higher HbA1c, AST and ALT and lower levels for HDL was observed (P < .05, <.0001, <.0001, <.01, resp.). Overall BMI decreased from 45.0 ± 6.8 to 29.7 ± 6.5 and 31.6 ± 4.4 kg/m2 at 1 and 3 years. An impaired weight loss was demonstrated for patients with NASH and patients with elevated HbA1c (plateau 28.08 kg/m2 versus 29.79 kg/m2 and 32.30 kg/m2 versus 28.79 kg/m2, resp.). Regarding NASH, a significant improvement of AST, ALT, triglyceride and HDL levels was shown (P < .0001 for all). A resolution of elevated HbA1c was observed in 21 of 23 patients. Summary. NASH patients showed a significant loss of body weight and amelioration of NASH status. ISG can be successfully performed in these patients and should be recommended for this subgroup
Multifragmentation and nuclear phase transitions (liquid-fog and liquid-gas)
Thermal multifragmentation of hot nuclei is interpreted as the nuclear
liquid-fog phase transition. The charge distributions of the intermediate mass
fragments produced in p(3.6 GeV) + Au and p(8.1 GeV) + Au collisions are
analyzed within the statistical multifragmentation model with the critical
temperature for the nuclear liquid-gas phase transition Tc as a free parameter.
The analysis presented here provides strong support for a value of Tc > 15 MeV.Comment: 4 pages, 2 figures, Submittet to Proc. of NN2003 to be published in
Nucl. Phys.
Fusicoccin Counteracts the Toxic Effect of Cadmium on the Growth of Maize Coleoptile Segments
The effects of cadmium (Cd; 0.1–1000 μM) and fusicoccin (FC) on growth, Cd2+ content, and membrane potential (Em) in maize coleoptile segments were studied. In addition, the Em changes and accumulation of Cd and calcium (Ca) in coleoptile segments treated with Cd2+ combined with 1 μM FC or 30 mM tetraethylammonium (TEA) chloride (K+-channel blocker) were also determined. In this study, the effects of Ca2+-channel blockers [lanthanum (La) and verapamil (Ver)] on growth and content of Cd2+ and Ca2+ in coleoptile segments were also investigated. It was found that Cd at high concentrations (100 and 1000 μM) significantly inhibited endogenous growth of coleoptile segments and simultaneously measured proton extrusion. FC combined with Cd2+ counteracted the toxic effect of Cd2+ on endogenous growth and significantly decreased Cd2+ content (not the case for Cd2+ at the highest concentration) in coleoptile segments. Addition of Cd to the control medium caused depolarization of Em, the extent of which was dependent on Cd concentration and time of treatment with Cd2+. Hyperpolarization of Em induced by FC was suppressed in the presence of Cd2+ at 1000 μM but not Cd2+ at 100 μM. It was also found that treatment of maize coleoptile segments with 30 mM TEA chloride caused hyperpolarization of Em and decreased Cd2+ content in coleoptile segments, suggesting that, in the same way as for FC, accumulation of Cd2+ was dependent on plasma membrane (PM) hyperpolarization. Similar to FC, TEA chloride also decreased Ca2+ content in coleoptile segments. La and Ver combined with Cd2+ (100 μM) significantly decreased Cd content in maize coleoptile segments, but only La completely abolished the toxic effect of Cd2+ on endogenous growth and growth in the presence of FC. Taken together, these results suggest that the mechanism by which FC counteracts the toxic effect of Cd2+ (except at 1000 μM Cd2+) on the growth of maize coleoptile segments involves both stimulation of PM H+-ATPase activity by FC as well as Cd2+-permeable, voltage-dependent Ca channels, which are blocked by FC and TEA chloride-induced PM hyperpolarization
Overview of the LADEE Ultraviolet-visible Spectrometer: Design, Performance and Planned Operations
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is an orbital lunar science mission currently under development to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The mission s focus is to study the pristine state of the lunar atmosphere and dust environment prior to possible lunar exploration activities by countries, including the United States, China, India, and Japan, among others. Activity on the lunar surface has the potential of altering the tenuous lunar atmosphere, but changing the type and concentration of gases in the atmosphere. Before these activities occur it is important to make measurements of the current lunar atmosphere in its unmodified state. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gases, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gases of both lunar and extra-lunar origin. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. Launch is planned for August, 2013
Red Dragon: Low-cost Access to the Surface of Mars using Commercial Capabilities
We will discuss the feasibility of using a minimally-modified variant of a SpaceX Dragon capsule as a low-cost, large-capacity, near-term, Mars lander for scientific and human-precursor missions. We have been evaluating such a Red Dragon platform as an option for a Discovery Program mission concept. A Red Dragon lander has the potential to be low cost primarily because it would be derived from a routinely-flying spacecraft. Dragon is being developed to ferry cargo and crew to and from the International Space Station (ISS). The cargo variant is currently undergoing test flights, which will be followed by standard ISS cargo missions and, eventually, crewed flights. The human variant, unlike other Earth-return vehicles, appears to also have most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant Super- Draco engines integrated directly into the capsule which are intended for launch abort and powered landings on Earth. These thrusters suggest the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface. Concepts for large, human-relevant landers (see, e.g., [1]) also often employ supersonic retro-propulsion; Red Dragon's entry, descent, and landing approach would scale to those landers. Further, SpaceX's Falcon Heavy launch vehicle, currently under development and expected to have its first flight in 2013, will be capable of sending Dragon on a trajectory to Mars. We will discuss our motivation for exploring a Red Dragon lander, the primary technical questions which determine its feasibility, and the current results of our analysis. In particular, we will examine entry, descent, and landing (EDL) in detail. We will describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface
Thermal multifragmentation in p + Au interactions at 2.16, 3.6 and 8.1 GeV incident energies
Multiple emission of intermediate-mass fragments has been studied for the collisions p + Au at 2.16, 3.6 and 8.1 GeV with the FASA setup. The mean IMF multiplicities for events with at least one IMF are equal to 1.7, 1.9 and 2.1 (±0.2) respectively. The multiplicity, charge distributions and kinetic energy spectra of IMF are described in the framework of a intranuclear cascade model followed by the statistical multifragmentation model. However, between the two parts of the calculation the excitation energies and the residual masses and charges are modified to take into account the losses during expansion. The results support a scenario of true thermal multifragmentation of a hot and expanded target spectator
- …