43 research outputs found

    A Modular Gain-of-Function Approach to Generate Cortical Interneuron Subtypes from ES Cells

    Get PDF
    SummaryWhereas past work indicates that cortical interneurons (cINs) can be generically produced from stem cells, generating large numbers of specific subtypes of this population has remained elusive. This reflects an information gap in our understanding of the transcriptional programs required for different interneuron subtypes. Here, we have utilized the directed differentiation of stem cells into specific subpopulations of cortical interneurons as a means to identify some of these missing factors. To establish this approach, we utilized two factors known to be required for the generation of cINs, Nkx2-1 and Dlx2. As predicted, their regulated transient expression greatly improved the differentiation efficiency and specificity over baseline. We extended upon this ā€œcIN-primedā€ model in order to establish a modular system whereby a third transcription factor could be systematically introduced. Using this approach, we identified Lmo3 and Pou3f4 as genes that can augment the differentiation and/or subtype specificity of cINs inĀ vitro

    Distinct hypothalamus-habenula circuits govern risk preference

    Get PDF
    Appropriate evaluation of risk is essential for survival in complex, uncertain environments. Confronted with choosing between a certain (safe) and an uncertain (risky) option, animals of various species show strong preferential traits which are stable across extended periods of time1āˆ’8^{1-8}. How such risk preference is encoded in the neural circuitry of the brain remains poorly understood. A candidate brain region is the lateral habenula (LHb), which has been shown to be prominently involved in various value-guided behaviors9āˆ’12^{9-12}. Here, using a balanced two-alternative choice task involving risk of loss, we find that neuronal activity in the LHb prior to action selection reflects risk preference and is governed by distinct inputs from hypothalamic subregions. Specifically, by employing multi-fiber photometry and targeted optogenetic perturbations, we identified glutamatergic LHb projections from both lateral and medial hypothalamus (LH/MH) that provide functionally distinct synaptic inputs to the LHb before action selection. Microendoscopic two-photon calcium imaging revealed risk-preference-selective LHb neurons that decreased their selectivity upon chemogenetic silencing of MH but not LH inputs. Finally, optogenetic stimulation of MHā†’LHb axons evoked both excitatory and inhibitory postsynaptic responses in LHb neurons (indicative of glutamate/GABA co-release for fine-tuned gain control13^{13}), whereas LHā†’LHb projections were purely excitatory. Our results thus reveal functionally distinct hypothalamus-habenula circuits that govern risk preference in situations of economic decision-making

    Adamtsl3 mediates DCC signaling to selectively promote GABAergic synapse function

    Full text link
    The molecular code that controls synapse formation and maintenance inĀ vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients

    A model of humanĀ neural networks reveals NPTX2Ā pathologyĀ in ALS and FTLD

    Get PDF
    Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1^{1}, which involve human-specific mechanisms2ā€“5^{2ā€“5} that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6^{6}. Single-cell transcriptomics and comparison to independent neural stem cells7^{7} showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8^{8}. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3ā€² untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity

    Characterization of Nkx6-2-Derived Neocortical Interneuron Lineages

    Get PDF
    Ventral telencephalic progenitors expressing the homeodomain transcription factor Nkx6-2 have been shown to give rise to a multitude of cortical interneuron subtypes usually associated with origin in either the medial ganglionic eminence or the caudal ganglionic eminence. The function of Nkx6-2 in directing the fate of those progenitors has, however, not been thoroughly analyzed. We used a combination of genetic inducible fate mapping and in vivo loss-of-function to analyze the requirement of Nkx6-2 in determining the fate of cortical interneurons. We have found that interneuron subtypes are born with a characteristic temporal pattern. Furthermore, we extend the characterization of interneurons from the Nkx6-2 lineage through the application of electrophysiological methods. Analysis of these populations in Nkx6-2 null mice suggests that there is a small and partially penetrant loss of delayed non-fast spiking somatostatin/calretinin double positive cortical interneurons in the absence of Nkx6-2 gene function

    A 'Marginal' tale: the development of the neocortical layer 1

    Get PDF
    The development of neocortical layer 1 is a very dynamic process and the scene of multiple transient events, with Cajal-Retzius cell death being one of the most characteristic ones. Layer 1 is also the route of migration for a substantial number of GABAergic interneurons during embryogenesis and where some of which will ultimately remain in the adult. The two cell types, together with a diverse set of incoming axons and dendrites, create an early circuit that will dramatically change in structure and function in the adult cortex to give prominence to inhibition. Through the engagement of a diverse set of GABAergic inhibitory cells by bottom-up and top-down inputs, adult layer 1 becomes a powerful computational platform for the neocortex

    Synaptic transmission in cortical networks : focus on the corpus callosum and CA1 hippocampal area of rodents

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Inhibition as a Transplant-Mediated Therapy: A New Paradigm for Treating Parkinson's?

    Get PDF
    In this issue of Cell Stem Cell,Martƭnez-CerdeƱo and colleagues (2010) transplant interneuron precursors from the MGE into the striatum of a rat model of Parkinson's disease and observe a 5% increase in the endogenous GABAergic interneuron population resulting in behavioral benefits in both lesioned and wild-type animals
    corecore