84 research outputs found
Analysis of GF (2m) Multiplication Algorithm: Classic Method v/s Karatsuba-Ofman Multiplication Method
In recent years, finite field multiplication in GF(2m) has been widely used in various applications such as error correcting codes and cryptography. One of the motivations for fast and area efficient hardware solution for implementing the arithmetic operation of binary multiplication , in finite field GF (2m), comes from the fact, that they are the most time-consuming and frequently called operations in cryptography and other applications. So, the optimization of their hardware design is critical for overall performance of a system. Since a finite field multiplier is a crucial unit for overall performance of cryptographic systems, novel multiplier architectures, whose performances can be chosen freely, is necessary. In this paper, two Galois field multiplication algorithms (used in cryptography applications) are considered to analyze their performance with respect to parameters viz. area, power, delay, and the consequent Area×Time (AT) and Power×Delay characteristics. The objective of the analysis is to find out the most efficient GF(2m) multiplier algorithm among those considered
Performance Evaluation of Chaos Based IDMA Scheme Using Joint Turbo Equalization Over Frequency Selective Fading Channel
This paper proposed the analysis of a new chaos based interleave division multiple access (CB-IDMA) wireless communication system. It also proposed the use of joint turbo equalization to mitigate the effect of intersymbol interference (ISI) in deep faded frequency selective channel. In this study, the proposed CB-IDMA system used the chaotic Tent map for the design of a robust interleaver, which produces low correlation among the users and yields better bit error rate performance. The proposed structure combined the joint turbo equalization for the cancellation of ISI and multiple access interference (MAI), which was observed as the main impediment to successful IDMA communication over frequency selective multipath fading channel. Two types of frequency domain equalizers were considered for performance evaluation; zero forcing (ZF) and minimum mean square error (MMSE) equalizer. Simulation experiments were performed in MATLAB and the results demonstrated that the proposed CB-IDMA system with joint turbo equalization may be preferred in deep fading environment
Case Report Three rooted maxillary first premolar-a case report
Abstract: Endodontic literature has described the standard anatomy of maxillary first premolar to have two roots and two canals. At the same time, there are many cases reports documenting numerous aberrations in its root canal morphology. This article showcases a documented case of an extracted three rooted premolar that was recovered during collections of samples for an in vitro study
The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres
We are now on a clear trajectory for improvements in exoplanet observations
that will revolutionize our ability to characterize their atmospheric
structure, composition, and circulation, from gas giants to rocky planets.
However, exoplanet atmospheric models capable of interpreting the upcoming
observations are often limited by insufficiencies in the laboratory and
theoretical data that serve as critical inputs to atmospheric physical and
chemical tools. Here we provide an up-to-date and condensed description of
areas where laboratory and/or ab initio investigations could fill critical gaps
in our ability to model exoplanet atmospheric opacities, clouds, and chemistry,
building off a larger 2016 white paper, and endorsed by the NAS Exoplanet
Science Strategy report. Now is the ideal time for progress in these areas, but
this progress requires better access to, understanding of, and training in the
production of spectroscopic data as well as a better insight into chemical
reaction kinetics both thermal and radiation-induced at a broad range of
temperatures. Given that most published efforts have emphasized relatively
Earth-like conditions, we can expect significant and enlightening discoveries
as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape
A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b
Close-in giant exoplanets with temperatures greater than 2,000 K (''ultra-hot
Jupiters'') have been the subject of extensive efforts to determine their
atmospheric properties using thermal emission measurements from the Hubble and
Spitzer Space Telescopes. However, previous studies have yielded inconsistent
results because the small sizes of the spectral features and the limited
information content of the data resulted in high sensitivity to the varying
assumptions made in the treatment of instrument systematics and the atmospheric
retrieval analysis. Here we present a dayside thermal emission spectrum of the
ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on JWST. The
data span 0.85 to 2.85 m in wavelength at an average resolving power of
400 and exhibit minimal systematics. The spectrum shows three water emission
features (at 6 confidence) and evidence for optical opacity,
possibly due to H, TiO, and VO (combined significance of 3.8).
Models that fit the data require a thermal inversion, molecular dissociation as
predicted by chemical equilibrium, a solar heavy element abundance
(''metallicity'', M/H = 1.03 solar), and a
carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside
brightness temperature map, which shows a peak in temperature near the
sub-stellar point that decreases steeply and symmetrically with longitude
toward the terminators.Comment: JWST ERS bright star observations. Uploaded to inform JWST Cycle 2
proposals. Manuscript under review. 50 pages, 14 figures, 2 table
Photochemically-produced SO in the atmosphere of WASP-39b
Photochemistry is a fundamental process of planetary atmospheres that
regulates the atmospheric composition and stability. However, no unambiguous
photochemical products have been detected in exoplanet atmospheres to date.
Recent observations from the JWST Transiting Exoplanet Early Release Science
Program found a spectral absorption feature at 4.05 m arising from SO
in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass
(0.28 M) gas giant exoplanet orbiting a Sun-like star with an equilibrium
temperature of 1100 K. The most plausible way of generating SO in
such an atmosphere is through photochemical processes. Here we show that the
SO distribution computed by a suite of photochemical models robustly
explains the 4.05 m spectral feature identified by JWST transmission
observations with NIRSpec PRISM (2.7) and G395H (4.5). SO
is produced by successive oxidation of sulphur radicals freed when hydrogen
sulphide (HS) is destroyed. The sensitivity of the SO feature to the
enrichment of the atmosphere by heavy elements (metallicity) suggests that it
can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an
inferred metallicity of 10 solar. We further point out that
SO also shows observable features at ultraviolet and thermal infrared
wavelengths not available from the existing observations.Comment: 39 pages, 14 figures, accepted to be published in Natur
Photochemically produced SO2 in the atmosphere of WASP-39b
Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations
Early Release Science of the exoplanet WASP-39b with JWST NIRISS
Transmission spectroscopy provides insight into the atmospheric properties
and consequently the formation history, physics, and chemistry of transiting
exoplanets. However, obtaining precise inferences of atmospheric properties
from transmission spectra requires simultaneously measuring the strength and
shape of multiple spectral absorption features from a wide range of chemical
species. This has been challenging given the precision and wavelength coverage
of previous observatories. Here, we present the transmission spectrum of the
Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS
instrument on the JWST. This spectrum spans m in wavelength and
reveals multiple water absorption bands, the potassium resonance doublet, as
well as signatures of clouds. The precision and broad wavelength coverage of
NIRISS-SOSS allows us to break model degeneracies between cloud properties and
the atmospheric composition of WASP-39b, favoring a heavy element enhancement
("metallicity") of the solar value, a sub-solar
carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen
(K/O) ratio. The observations are best explained by wavelength-dependent,
non-gray clouds with inhomogeneous coverage of the planet's terminator.Comment: 48 pages, 12 figures, 2 tables. Under review at Natur
- …