10 research outputs found

    Ice Cod Arctogadus glacialis (Peters, 1874) in Northeast Greenland—A First Sketch of Spatial Occurrence and Abundance

    Get PDF
    Based on bottom trawl catches during the years 2002–2017, we present the first large-scale baseline on the spatial distribution and abundance of ice cod Arctogadus glacialis (Peters, 1874) in the fjords and on the shelf in Northeast Greenland (latitudes 70 °N–78 °N). Ice cod abundance peaked in the secluded sill fjords such as Bessel Fjord, Brede Fjord, Clavering Ø fjord system and Kong Oscar Fjord as compared to the offshore shelf. The mean biomass was estimated as 3.9 kg/km2 on the shelf and 49.3 kg/km2 in the fjords. Nearly 45% of the biomass was restricted to temperatures < −1.0 °C and almost 90 % of the biomass occurred within 200–600 m depth. This corresponds well with the deep, subzero fjords along the Northeast Greenland coast which, thus, appear the most suitable habitat for ice cod. Moreover, there was a gradual decrease in ice cod biomass on the shelf over the years 2002–2017. This apparent relocation of ice cod matches the ongoing warming of the Northeast Greenland shelf waters. Given that the overall temperature space of ice cod spans less than 4 ºC in Northeast Greenland, it is likely that the species is particularly vulnerable to climate change as warmer waters before long enter the fjords, i.e., the main habitat for ice cod

    Arctic marine fishes and their fisheries in light of global change

    Get PDF
    In light of ocean warming and loss of Arctic sea ice, harvested marine fishes of boreal origin (and their fisheries) move poleward into yet unexploited parts of the Arctic seas. Industrial fisheries, already in place on many Arctic shelves, will radically affect the local fish species as they turn up as unprecedented bycatch. Arctic marine fishes are indispensable to ecosystem structuring and functioning, but they are still beyond credible assessment due to lack of basic biological data. The time for conservation actions is now, and precautionary management practices by the Arctic coastal states are needed to mitigate the impact of industrial fisheries in Arctic waters. We outline four possible conservation actions: scientific credibility, ‘green technology’, legitimate management and overarching coordination

    The distribution of the fathead sculpin species Cottunculus subspinosus Jensen, 1902

    Get PDF
    The range of the rarely caught fathead sculpin species Cottunculus subspinosus has been considered restricted to the waters off East Greenland and Northeast Iceland. For the first time the species is recorded from the east side of the Norwegian Sea, and also it is found further north in the Greenland Sea than previously known. Mapping all the corroborated specimens known indicates that the species seems confined to the continental slopes of the Nordic Seas, where it is found in waters with a temperature below zero and a depth of more than 900 m. Depth distribution shows almost no overlap with the closely related sympatric Cottunculus microps, perhaps as a result of competitive exclusion

    The distribution of the fathead sculpin species Cottunculus subspinosus Jensen, 1902

    No full text
    The range of the rarely caught fathead sculpin species Cottunculus subspinosus has been considered restricted to the waters off East Greenland and Northeast Iceland. For the first time the species is recorded from the east side of the Norwegian Sea, and also it is found further north in the Greenland Sea than previously known. Mapping all the corroborated specimens known indicates that the species seems confined to the continental slopes of the Nordic Seas, where it is found in waters with a temperature below zero and a depth of more than 900 m. Depth distribution shows almost no overlap with the closely related sympatric Cottunculus microps, perhaps as a result of competitive exclusio
    corecore