13 research outputs found

    Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro

    Get PDF
    The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions

    Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro

    Get PDF
    The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions

    Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative Ī²-catenin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation.</p> <p>Results</p> <p>Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a Ī²-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative Ī²-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4.</p> <p>Conclusion</p> <p>RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating Ī²-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.</p

    Patient-derived xenografts: a promising resource for preclinical cancer research

    No full text
    Patient-derived xenograft tumors retain molecular and histopathological features of the originating tumor and are useful preclinical tools for drug discovery and assessment. We recently reported that ā€˜rapidā€™ engraftment of head and neck squamous cell carcinoma samples is highly prognostic and correlates with deregulation of the G1/S checkpoint. Tumors with genetic alterations in cyclinD1 (CCND1) and/or cyclin-dependent kinase inhibitor 2A (CDKN2A) are more likely to respond to abemaciclib

    Cancer stem cells in head and neck squamous cell carcinoma

    No full text

    Extracellular Heparan 6-<i>O</i>-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies

    No full text
    Pan-cancer analysis of TCGA and CPTAC (proteomics) data shows that SULF1 and SULF2 are oncogenic in a number of human malignancies and associated with poor survival outcomes. Our studies document a consistent upregulation of SULF1 and SULF2 in HNSC which is associated with poor survival outcomes. These heparan sulfate editing enzymes were considered largely functional redundant but single-cell RNAseq (scRNAseq) shows that SULF1 is secreted by cancer-associated fibroblasts in contrast to the SULF2 derived from tumor cells. Our RNAScope and patient-derived xenograft (PDX) analysis of the HNSC tissues fully confirm the stromal source of SULF1 and explain the uniform impact of this enzyme on the biology of multiple malignancies. In summary, SULF2 expression increases in multiple malignancies but less consistently than SULF1, which uniformly increases in the tumor tissues and negatively impacts survival in several types of cancer even though its expression in cancer cells is low. This paradigm is common to multiple malignancies and suggests a potential for diagnostic and therapeutic targeting of the heparan sulfatases in cancer diseases

    Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain

    No full text
    Fire-induced changes in humic and lipid soil fractions were assessed by two approaches. Comparisons were made of the nature and amounts of the two fractions in samples of aDystricXerochrept under two pine stands, one that had been burned two years earlier and one that had not. Further comparisons were made of humic and lipidfractions in a soil sample before and after heating in the laboratory. Separation and identification of the compounds in these soil fractions were carried out by preparative liquid chromatography followed by GC-MS in the case of lipids; the humic acids were previously degraded by successive treatments with sodium persulphate and potassium permanganate. The greatest differences were in the distribution patterns of soil lipids (alkanes, fatty acids): accumulation of the homologues of lower molecular weight () was dominant in the post-fire samples. For soil resin acids, these samples had higher values for dehydroabietic and secodehydroabietic acids and lower ones for pimaric acid. The degradative studies on the humic acids showed that the relative yields of aromatic products were comparatively higher in the samples after burning. Alkanoic diacids were found to be the least resistant to heating, whereas greater amounts of alkanes in the less condensed polymer structures of the humic acids were observed in the samples after burning. The relative amounts and distribution patterns of the fatty acids released showed no great differences in the humic acids.Peer reviewe
    corecore