20 research outputs found

    Noncovalent Interactions by QMC: Speedup by One-Particle Basis-Set Size Reduction

    Full text link
    While it is empirically accepted that the fixed-node diffusion Monte-Carlo (FN-DMC) depends only weakly on the size of the one-particle basis sets used to expand its guiding functions, limits of this observation are not settled yet. Our recent work indicates that under the FN error cancellation conditions, augmented triple zeta basis sets are sufficient to achieve a benchmark level of 0.1 kcal/mol in a number of small noncovalent complexes. Here we report on a possibility of truncation of the one-particle basis sets used in FN-DMC guiding functions that has no visible effect on the accuracy of the production FN-DMC energy differences. The proposed scheme leads to no significant increase in the local energy variance, indicating that the total CPU cost of large-scale benchmark noncovalent interaction energy FN-DMC calculations may be reduced.Comment: ACS book chapter, accepte

    Fusarium : more than a node or a foot-shaped basal cell

    Get PDF
    Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).http://www.studiesinmycology.org/BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Production and Soil Scienc

    Fusarium: more than a node or a foot-shaped basal cell

    Get PDF
    Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org)

    Anti-Proliferative and Apoptotic Effects of Methanolic Extracts from Different Cladonia Species on Human Breast Cancer Cells

    No full text
    WOS: 000358185100002PubMed ID: 26213854This study tries to elucidate the anti-proliferative and apoptotic effects of methanolic lichen extracts from Cladonia rangiformis and Cladonia convolute in MCF-7 human breast cancer cells. Lichen extracts (0-2 mg/ml) were added to MCF-7 cells for 24 h. Cell viability was tested using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Cell proliferation was observed using bromodeoxyuridine (BrdU) labelling and proliferating cell nuclear antigen (PCNA) by immunocytochemistry. The TUNEL method was used for cell death detection. The effective dose (ED50) values of methanolic extracts from C. rangiformis and C. convolute were found to be 0.905 and 0.977 mg/ml, respectively. Treatment with C. rangiformis methanolic extract (0.2-0.8 mg/ml) dose-dependently inhibited proliferation of MCF-7 cells as detected by BrdU incorporation. The inhibition was started in 0.2 mg/ml concentration of C. convoluta methanolic extract. The percent of PCNA immunopositive cells showed a decrease in MCF-7 cells treated with two lichen extracts compared to control MCF-7. Both methanolic extracts showed a significant increase in percentage of apoptosis-positive cells. These results indicate that methanolic lichen extracts from C. rangiformis and C. convolute inhibited proliferation of MCF-7 cells and caused apoptosis in MCF-7 cells. The lichens may be novel natural agents for treating breast cancer disease.Marmara University [FEN-A-200611-0208]This study was supported by The Research Fund of Marmara University (project number FEN-A-200611-0208)

    In vitro evaluation of cytotoxic, anti-proliferative, anti-oxidant, apoptotic, and anti-microbial activities of Cladonia pocillum

    No full text
    WOS: 000418143900012PubMed ID: 28838343The aim of this study was to investigate the anti-proliferative, apoptotic, cytotoxic, and anti-oxidant effects of extracts from the lichen Cladonia pocillumon human breast cancer cells (MCF-7), and to characterize the anti-microbial features. MCF-7 cells were treated with methanolic C. pocillum extract for 24h. The cytotoxicity of the extract was tested with MTT. Moreover, its anti-proliferative effects were examined with immunocytochemical method. Apoptosis and biochemical parameters were detected in MCF-7. The methanol and chloroform extracts of the lichen were tested for anti-microbial activity against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans using the disc diffusion method and calculation of minimal inhibitory concentrations. Although BrdU incorporation was not observed in MCF-7 cells treated with methanol extract at a concentration above 0.2 mg/ mL, a significant decrease was observed int he percentage of PCNA immunoreactive cells in groups treated with 0.2, 0.4, 06, and 0.8 mg/mL methanol extracts of C. pocillum (49 +/- 6.3, 44 +/- 5.2, 23 +/- 2.5, 0, respectively) compared to that of control (85 +/- 4.5). The percentage of apoptotic cells significantly increased in groups treated with 0.2, 0.4, 0.6, and 0.8 mg/mL extracts of the C. pocillum (54 +/- 3.5, 76 +/- 2.6, 77 +/- 1.8, 82 +/- 4.2, respectively) compared with that of control group (3.9 +/- 1.5). The half-maximal inhibitory concentration of the methanol extract against MCF-7 cells was 0.802 mg/mL. Although the chloroform extract showed more effective anti-microbial activity overall, the methanol extract showed higher anti-fungal activity. Collectively, the results of our study indicate that C. pocillum extracts have strong anti-microbial and apoptotic effects. This lichen therefore shows potential for development as a natural anti-microbial, anti-oxidant, and apoptotic agent.Marmara University [FEN-A-200611-0208]We thank Prof. Dr. Engin Ozhatay (The Manager of Marmara University Research Center for Natural Herbs and Water Products) for providing us accommodation and transportation during collection of lichen material. The strains were provided by the Medical Microbiology Department of the Medicine Faculty of Yeditepe University, Istanbul, Turkey. This study was supported by The Research Fund of Marmara University with the project number FEN-A-200611-0208
    corecore