4 research outputs found

    Pilot Study: Immune Checkpoints Polymorphisms in Greek Primary Breast Cancer Patients

    Get PDF
    Background: Breast cancer is the most prevalent and second leading cause of cancer-related death in women worldwide. Despite early detection and better treatment therapies, 30% of early-stage breast cancer patients still develop recurrent disease. Breast cancer is a heterogeneous disease comprising several molecular subtypes, commonly classified into clinical subtypes based on the hormone receptor status. These subtypes included luminal A and luminal B, which have different prognoses. Breast cancer development and progression involve many factors. Polymorphisms of PD-1, PD-L1, and PD-L2 genes have been previously associated with high risk and prognosis of cancer. However, no studies have associated PD-1, PD-L1, and PD-L2 polymorphisms with primary breast cancer subtypes. Hence, this study evaluated functional single nucleotide polymorphisms of PD-1, PD-L1, and PD-L2 with primary breast cancer subtypes, luminal A, and luminal B. In addition, we evaluated the PD-L1 protein expression in relation to primary breast cancer subtypes and stages. Results: There were no significant differences in the allele frequencies of PD-1 polymorphisms (rs2227981 G>A, rs7421861 A>G, and rs11568821 C>T) and PD-L1 polymorphisms (rs10815225 C>T and rs2282055 T>G) when compared with the general European population. However, a significant difference was detected in one of the PD-L2 polymorphisms (rs1009759 A>G), with the G allele higher in breast cancer patients than in the general European population. A higher prevalence of the T allele of PD-L1 polymorphism rs2282055 T>G was observed in luminal B breast cancer patients compared with luminal A. No significant difference was detected in other polymorphisms. We also observed that the PD-L1 rs2282055 TT genotype was more prevalent in luminal B breast cancer patients compared with luminal A. Our results found no association of the selected SNPs in the PDCD1 gene with breast cancer risk. Similarly, the protein expression data showed that PD-L1 and PD-L2 are associated with an aggressive phenotype, Luminal B, and advanced breast cancer stage. Conclusion: These findings suggest that immune checkpoint polymorphisms are associated with the risk and subtypes of breast cancer

    A green synthesis route to derive carbon quantum dots for bioimaging cancer cells

    Get PDF
    Carbon quantum dots (CQDs) are known for their biocompatibility and versatile applications in the biomedical sector. These CQDs retain high solubility, robust chemical inertness, facile modification, and good resistance to photobleaching, which makes them ideal for cell bioimaging. Many fabrication processes produce CQDs, but most require expensive equipment, toxic chemicals, and a long processing time. This study developed a facile and rapid toasting method to prepare CQDs using various slices of bread as precursors without any additional chemicals. This fast and cost-effective toasting method could produce CQDs within 2 h, compared with the 10 h process in the commonly used hydrothermal method. The CQDs derived from the toasting method could be used to bioimage two types of colon cancer cells, namely, CT-26 and HT-29, derived from mice and humans, respectively. Significantly, these CQDs from the rapid toasting method produced equally bright images as CQDs derived from the hydrothermal method

    Bioimaging of C2C12 Muscle Myoblasts Using Fluorescent Carbon Quantum Dots Synthesized From Bread

    Get PDF
    Biocompatible carbon quantum dots (CQDs) have recently attracted increased interest in biomedical imaging owing to their advantageous photoluminescence properties. Numerous precursors of fluorescent CQDs and various fabrication procedures are also reported in the literature. However; the use of concentrated mineral acids and other corrosive chemicals during the fabrication process curtails their biocompatibility and severely limits the utilization of the products in cell bio-imaging. In this study; a facile; fast; and cost-effective synthetic route is employed to fabricate CQDs from a natural organic resource; namely bread; where the use of any toxic chemicals is eliminated. Thus; the novel chemical-free technique facilitated the production of luminescent CQDs that were endowed with low cytotoxicity and; therefore; suitable candidates for bioimaging sensors. The above mentioned amorphous CQDs also exhibited fluorescence over 360-420 nm excitation wavelengths; and with a broad emission range of 360-600 nm. We have also shown that the CQDs were well internalized by muscle myoblasts (C2C12) and differentiated myotubes; the cell lines which have not been reported before
    corecore