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Abstract: Biocompatible carbon quantum dots (CQDs) have recently attracted increased interest
in biomedical imaging owing to their advantageous photoluminescence properties. Numerous
precursors of fluorescent CQDs and various fabrication procedures are also reported in the literature.
However; the use of concentrated mineral acids and other corrosive chemicals during the fabrication
process curtails their biocompatibility and severely limits the utilization of the products in cell
bio-imaging. In this study; a facile; fast; and cost-effective synthetic route is employed to fabricate
CQDs from a natural organic resource; namely bread; where the use of any toxic chemicals is
eliminated. Thus; the novel chemical-free technique facilitated the production of luminescent CQDs
that were endowed with low cytotoxicity and; therefore; suitable candidates for bioimaging sensors.
The above mentioned amorphous CQDs also exhibited fluorescence over 360-420 nm excitation
wavelengths; and with a broad emission range of 360-600 nm. We have also shown that the CQDs
were well internalized by muscle myoblasts (C2C12) and differentiated myotubes; the cell lines which
have not been reported before.

Keywords: carbon quantum dots; green synthesis; bioimaging; C2C12 muscle myoblast

1. Introduction

In recent years, quantum dots (nanoparticles having typical diameters of <10 nm), have gained
an increasing interest in a variety of photonic applications, such as chemical sensors, biosensors,
light-emitting diode (LED), and electrocatalysis [1-6]. Carbon quantum dots (CQDs) are a relatively
new family of nanoparticles, with carbon cores and associated ligands that often exhibit unique
optical properties, and thus have emerged as the most promising materials for biomedical applications,
especially, given their enhanced bio-compatibility [7]. CQDs generally show strong absorption in the
ultra-violet region and exhibit excitation-dependent emission in the visible spectrum, an interesting
property for the purpose of bioimaging [8-11]. The synthetic techniques for the fabrication of CQDs
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generally fall into two categories, namely top-down and bottom-up approaches. The top-down
method essentially breaks apart a bulk material of interest into particles of nanometer dimensions
under chemically harsh conditions, such as treatments with concentrated acids and at relatively high
temperatures [12-14]. On the other hand, the bottom-up method fabricates CQDs from molecular
precursors that include citric acid, glucose, sucrose, phloroglucinol, and formamide [15-21]. However,
most of the currently practiced techniques are not environmentally friendly (i.e., “green”) because
of the usage of harsh acids, base, or solvents with synthetic chemical precursors, and thus pose risks
when used as fluorescent markers in cell bio-imaging. Environmentally sustainable routes have
been reported recently for carbon dot fabrication from spent coffee grounds [22] with relatively good
quantum efficiencies. Therefore, it is prudent to seek and explore more novel and environmentally
benign routes to fabricate CQDs with minimal cytotoxicity attribute.

An environmentally friendly fabrication process could begin by breaking down polymeric organic
material, or a natural product, into CQDs. Previously, carbon nanoparticles were fabricated from
bread [23,24] and also from starch-rich resources, such as rice, potato, cassava, and yam [25]. Generally,
mineral acids and/or fine chemicals were utilized in all of these fabrication methods; for example,
a sample obtained from the charred bread was treated with nitric acid for oxidation, or in the
case of other samples, treatments with toxic lower aliphatic alcohols, like methanol, was necessary.
Concentrated phosphoric acid (14.6 M) and sulfuric acid (2 M) were also often used as passivating
agents during the CQD synthesis from starch [25].

The synthesized CQDs, through different strategies, have been extensively explored for application
as fluorophores in bioimaging and bio-diagnostic fields. Compared to the current fluorescent dyes,
which are expensive and toxic, CQDs have the unique features of bio-compatibility, non-toxicity,
tunable photoluminescence, excellent photostability, chemical stability, physicochemical stability,
water-solubility, non-blinking characteristics, and thus are potentially superior candidates for cell
and tissue imaging [26-28]. The surface chemistry and ligands of these carbon nanoparticles enhance
bioconjugation with antibodies, proteins, or small molecules, that allow CQDs to be targeted biomarkers
to detect specific proteins e.g., inflammation factors [29]. Several reports have already successfully
demonstrated the applicability of CQDs synthesized through different techniques to image HeLa cells,
Ab549, L02 cells, and macrophage cells [30,31].

Here, we report for the first time on the synthesis of CQDs from bread samples, primarily
through a thermal carbonization technique, where no chemical compounds were used. The CQDs thus
obtained through a greener, facile, and cost-effective method were found to be fluorescent over a wide
range of excitation wavelengths without even requiring further chemical doping. To investigate the
efficacy of the prepared CQDs, C2C12, the muscle myoblast cell line, which has the capacity to form
myotubes in vitro [32] were selected. To the best of our knowledge, the present investigation is the
first study of its kind, where a 2-D cell culture model system for bio-imaging by CQDs was employed.
The internalization of these CQDs by C2C12 myoblast, as well as mature myotubes, was evident by
using a microscopic fluorescence probe.

2. Materials and Methods

2.1. Fabrication of CQD Samples

In the present study, white toast bread (sourced from a local supermarket) was used for CQD
fabrication by using two different methods. Typically, 100 g of bread contains 49 g of carbohydrate, 3 g
of sugar, 8 g of protein, 1.9 g of fat, 2.7 g of dietary fiber, and 400 mg of sodium. In the first method,
a domestic bread toaster (TARSST19B, Target Corporation, Williams Landing, Australia, operating at
220-240V, 50 Hz, 780-830 W) was used to toast two slices of bread (56.57 g + 0.1 mg) over different
time intervals starting from 120 s to 300 s. Here, various temperature settings from 100-160 °C were
also employed with a view to investigating the effect of the carbonization process on the nature of the
resulting precursors to the CQDs. The appropriate time duration and temperature were identified as
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255 s and 160 °C, respectively, after the samples were characterized, and optimum photoluminescence
observed. The carbon residues from the charred part of the bread slice were carefully scrubbed out,
and ground using mortar and pestle until a fine powder of 3.64 g (+0.1 mg) was obtained. About0.5g
(0.1 mg) of fine carbon powder was dispersed in 50 mL of Milli-Q water by sonication (Soniclean,
LABOUIP Technologies, Bayswater, Australia) for 5 min, and the mixture was then centrifuged (MSE
centrifuge, Thomas Scientific, New Jersey, USA) for 5 min at 3000 rpm. The resulting supernatant was
filtered using a number 1 (90 mm) filter paper (Whatman, GE Healthcare UK limited, Amersham, UK).
A sterile syringe filter unit (Minisart, Sartorius, Gottingen, Germany) of 0.2 pm was used to purify the
sample solutions and prevent bacterial growth. This sample was labelled CQD-A.

In the second method, the two bread slices of 56.52 g (+0.1 mg) were cut into smaller pieces and
transferred into a ceramic crucible preheated in a muffle furnace (SurTec, SUNVIC, Hamilton, UK) at
60 °C. The bread pieces were carbonized for 30 min and removed from the furnace at 220 °C. The bread
pieces were then carbonized at assorted temperatures, starting from 180 °C to 300 °C for several
time intervals starting from 20 min to 90 min, to enhance the technique and optimize the procedure.
The optical characterization and the photoemission result also helped to identify the suitable procedure,
which was then followed throughout the investigation. The dark brown colored product that was
obtained from the muffle furnace was ground using mortar and pestle until a fine powder of 8.21 g
(0.1 mg) was obtained. Another sample was prepared from this fine carbon powder using the same
purification procedure used for CQD-A. This sample was labelled CQD-B.

2.2. Chemical and Optical Characterization of CQD Samples

2.2.1. Transmission Electron Microscopy (TEM)

The lyophilized samples were prepared by resuspending them in ultrapure water (18 MQ)) and
filtering through a 0.2 um filter. The filtrate was dropped onto a holey-carbon grid and allowed to
dry. Morphological characteristics of the particles were observed using a JEOL 1010 TEM (JEOL Ltd.,
Tokyo, Japan) operated at an accelerating voltage of 100 kV.

2.2.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra of the lyophilized samples were determined by Fourier transform infrared
spectroscopy (Perkin Elmer, Waltham, MA, USA). An average of 16 scans with a resolution of
4 cm~! was performed within the range of 4000-400 cm™!.

2.2.3. Nuclear Magnetic Resonance Spectroscopy (NMR)

With a view to obtaining the chemical natures of the CQD materials, we employed a Bruker
600 MHz NMR instrument (Billerica, MA, USA) and the 1H and 13C spectra were run in deuterated
water (D,0O) at ambient probe conditions. In the case of the proton spectrum, an in-built spectral
editing technique was used to “suppress” the undesirable and otherwise prominent residual proton
signal from water. The collected spectra were then processed by proprietary software from Bruker
(TopSpin, version 4.0.8; Software for Processing the Acquired NMR Data; Bruker plc, Melbourne,
Australia, 2016).

2.2.4. X-Ray Diffraction (XRD)

The extent of crystallinity of the lyophilized samples was determined by a diffractometer,
XRD (Bruker AXS D8 DISCOVER, Billerica, MA, USA), equipped with a Cu K« radiation source
(A = 1.5418 A) operating at 40 kV and 35 mA. Spectral data were attained in the u-20 locked-couple
mode over a 26 interval of 5-90°.
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2.2.5. Zeta Potential

Particle surface charges were measured in ultrapure water (18 M(}) using a Malvern 2000 Zetasizer,
Malvern, UK following appropriate dilution and sonication within a DTS 1060C cuvette (Malvern, UK).

2.2.6. Fluorescence Measurements

Fluorescence measurements were carried out on a CLARIOstar® (BMG LABTECH, Ortanberg,
Germany) 96-welled plate reader with a Costar® 96-Well Black Polystyrene Plate (Ortanberg, Germany).
Maximum excitation and emissions were determined by scanning aqueous samples (150 pL) from 320
to 520 nm in 20 nm increments. Emissions spectra were recorded between 20 nm above the excitation
value to 700 nm.

2.3. Cell Culture

The synthesized CQDs were tested on C2C12 mouse muscle myoblasts (ATCC® CRL-1772™
via Sigma, Australia) to evaluate their potential in bio-imaging of cells. C2C12 cells were routinely
maintained in DMEM media containing 10% FBS (fetal bovine serum) and 1x Antibiotic-Antimycotic
(Gibco® Catalog number: 15240062) and kept at 37 °C in a humidified, 5% CO, atmosphere. The cells
were seeded on to coverslips pretreated with poly-L-lysine and after 24 h, CQDs (185 ug/mL) were
added to the media at 1:2 (CQDs:media (volume/volume)) ratio and incubated for the specified amount
of time along with the control cells. The control cells were treated with an equal volume of sterile
water. Cytotoxicity of CQDs was tested by seeding equal number of cells in 6-well plates and treating
them with CQDs, or water. After 24 h of incubation, the cells were lifted by treating them with 1x
TrypLE™ Select enzyme for 5-10 min and diluted with the complete media. The cells (0.1 mL) were
treated with an equal volume of trypan blue solution (0.4%) and viable cells were counted using
hemocytometer and calculated. Cells from four individual wells were counted in duplicates for each
sample set for representation.

Differentiation was initiated by washing 90-95% confluent cultures with phosphate buffered
saline (PBS) and incubation in differentiation media (DM: DMEM with 2% horse serum and 1% PS),
for 3-5 days with media change every 24 h. The differentiated myotubes were treated with CQDs as
described above for 24 h.

For imaging, all coverslips with cells were fixed with 4% formalin for 15 min, washed with
PBS, and mounted on slides with or without DAPI. The cells were visualized with a fluorescent
microscope (Nikon-Tish-A1R-MP, Melville, USA) at 20x setting. All images were converted to the
tagged information file format and processed with the Adobe Photoshop program (Photoshop CC
2015, Adobe, San Jose, CA, USA).

3. Results and Discussions

3.1. Characterization of CQD Samples

Transmission electron microscopy (TEM) was performed to determine the morphological
characterization. Figure 1 shows the TEM images and the size distribution histogram of the lyophilized
samples for both CQD-A and CQD-B. The presence of spherical quantum dots is clearly visible in both
samples. Most of the nanoparticles are less than 10 nm in diameter. The contrast enhanced images of
TEM are available in Supplementary Materials (Figure S1).

Considering the fact that most previous reports relied on environmentally hazardous chemicals to
successfully fabricate CQDs, here we follow the green route of synthesis and hence potentially safe
for most downstream applications like bio-imaging. It is important to note that this particle size was
obtained with a green route of synthesis without any environmentally hazardous chemicals.

FTIR analysis (Figure 2) shows that the overall vibrational spectral pattern very closely resembled
that of the parent carbohydrate (i.e., starch molecule). The broad peak at between 3200 and 3500 cm ™!
can be attributed to the hydroxyl group (-OH), either from the unburned starch matrix or from terminal
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hydroxyls attached to the graphitic carbons. The presence of the carboxyl (-COOH) group is clearly
visible through C=0 stretching (around 1653 cm~1, 1700 cm™1, and 1200 cm‘l).

CcQD

Composition (%)
Composition (%)

1 3 5 7 9111315171921 13 5 7 91113151719212325

Diameter (nm) Diameter (nm)

Figure 1. TEM images and size distribution histograms. (A,C) TEM image and size distribution
histogram of carbon quantum dots CQD-A; (B,D) TEM image and size distribution histogram of CQD-B.

The structural and morphological features of the synthesized samples were primarily elucidated
through X-ray diffraction studies (Figure 2). The XRD spectra of the two samples showed negligible
well-defined peaks indicating that the conditions generated during pyrolysis did not favor the
production of crystalline carbon dots. Even though both samples confirmed their identical nature,
CQD-A is more amorphous (80.2%) than the CQD-B (74%). The broad diffraction peaks were seen at
21 degree for both samples. This was comparable with previous reports [33] and was in alignment
with JCPDS 41-1487 (graphite).

In the NMR spectra (Figure 3A,B), there is evidence regarding the chemical environments of
protons, as well as the chemical nature/hybridization states of the carbon atoms to which the protons
are attached [34,35]. These broadly agree with the complementary information obtained through
the FT-IR spectra. The signals in the 'H spectra (Figure 3A) can be assigned as follows: 1-3 ppm
(H attached to sp® carbons); 3-6 ppm (for the protons attached to oxygenated, such as hydroxyl
and ether, and carbonyl groups; 8-10 ppm (aldehydic protons). In the corresponding '*C NMR
spectrum (Figure 3B), at least three corresponding signals/regions can be unambiguously identified:
20-80 ppm (sp> carbons and carbons bonded hydroxyl groups); 80-100 ppm (for carbons attached to
ether functions); 100-120 ppm (aromatic, or sp? carbons).

Zeta potential, which is indicative of particle surface charge, is widely used to characterize
nanometer-sized particles in the dispersion [36] and analyze particle colloidal stability. The particle
surface charge of samples CQD-A and CQD-B is —10.42 mV and —7.24 mV, respectively. The stability
of the colloidal dispersions generally increases with the magnitude of the zeta potential [37]. The zeta
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potential of the cells should be greatly negative (membrane potential of —50.5+ 0.8 mV) and the
particles show only very weak stability.
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Figure 2. (A) FTIR spectrum of CQD-A and CQD-B; (B) XRD pattern of CQD-A and CQD-B.

The emission spectrum (Figure 4) at different excitation wavelengths was recorded to analyze the
photoluminescence property of the samples (185 nug/mL). The fluorescence intensity of CQD-B was
about 50% higher than CQD-A, and both spectra had similar emission trends with maximum intensity
at 360 nm excitation wavelength. Any further increase in the excitation wavelength resulted in the
reduction of emission intensity. The emission spectrums also exhibited a redshift and displayed an
excitation tunable emission. The excitation dependent emission property of the fabricated CQDs is in
agreement with several previous studies reported in the literature [24,38,39]. The fluorescence images
of C2C12 cell incubated with CQD-A and CQD-B were brighter and promising with FITC filter which
represents the excitation wavelength of 475 to 490 nm. However, the intensity of fluorescence images
with TRITC filter was low as its excitation wavelength was 546 to 565 nm. This was in agreement with
the emission spectra which exhibited strong emission in green region and weak intensity in red region.
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Figure 3. (A) 'H spectrum of a colloidal solution of the CQD in D,O; (B) the corresponding '3C spectrum.
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Figure 4. (A) Fluorescent emission spectra of CQD-A; (B) fluorescent emission spectra of CQD-B.
3.2. Internalization of CQDs by C2C12 Cells

In bio-medical research, staining is a reliable tool to visualize and enhance features inside
cells, tissues, and animal models [40]. Several colored and/or fluorescent stains and dyes like,
hematoxylin-eosin, DAPI, fluorescein isothiocyanate, and rhodamine are widely used to achieve this.
However, one of the main disadvantages of many of the inherently fluorescent particles is their sheer
size, and hence the inability to cross live cell membranes. Most fluorescent dyes are also toxic to
live cells, and this necessitates fixing the cells prior to staining. Since the size of synthesized CQDs
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is less than 10 nm and that they are derived from natural sources with a green route of synthesis,
their capacity to cross live cell membranes was tested.

C2C12, the mouse muscle myoblast cell lines, were selected as they are widely used to study
muscle formation in vitro. Thus, imaging the myoblasts and myotubes are crucial in this specific
research scenario. This can be further applied to other 2D or 3D cell culture model systems, which have
the ability to differentiate to several different cell/tissue types across biological systems.

C2C12 cells were incubated with the prepared carbon quantum dots, CQD-A and CQD-B. The cells
were grown on coverslips pretreated with poly-L-lysine. The CQDs with the concentration of 185 ug/mL
were additionally filtered through 0.2 um filters (to prevent bacterial growth) and added to the media
containing cells. Since the CQDs were dissolved in water, the corresponding volume of water was
added to the control cells. As the doubling time of C2C12 is 15 h [41], the initial incubations were
set at 24 h, which is estimated to be ample time for testing the internalization. After 24 h, the wells
containing coverslips were fixed using formalin and after washing with PBS, the coverslips were
inverted and mounted onto the slides. The fluorescence imaging was carried out using filters for
fluorescein isothiocyanate (FITC) for green and tetramethyl rhodamine (TRITC) for red, depicting the
excitation filter wavelengths of 475490 nm and 545-565 nm respectively. The results (Figure 5) showed
a clear internalization of CQDs by C2C12 cells as compared to control cells, both in green and red filters.
Since CQD-A yielded better fluorescent intensity when compared to CQD-B (Figure 5A,C,E), CQD-A
was chosen for further experiments. Significant cell death was not observed during this experiment
making the CQDs important candidates for bio-imaging.

Figure 5. Fluorescence images of C2C12 cells after 24 h of incubation with CQDs. (A,B) Cells incubated
with water as control; (C,D) cells incubated CQD-A; (E,F) cells incubated with CQD-B; (A,C,E) are
images from FITC (green) channel; (B,D,F) are images from TRITC (red) channel.

Having observed the successful internalization of CQDs by C2C12 cells, the time period taken
for this was followed by incubating C2C12 cells with CQD-A for different time intervals (0, 6, 12, 16,
20, and 24 h). The data (Figure 6) showed that as the end of 16 h, the cells exhibited a remarkable
change in fluorescence intensity when compared to the control group. This also gives us an estimate of
incubation time required for quantum dots with live cells for the purpose of bio-imaging. From the
data, 16 h or overnight of incubation is deemed sufficient, thus making them perfect candidates for
applications in bio-imaging.
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850 pm 50 uM

50 pM 50 pM

Figure 6. The time course of the internalization of CQD-A by C2C12 cells tracked for 0-24 h. The images
were recorded using FITC channel.

3.3. Cytotoxicity

Since low cytotoxicity and resultant minimal cell death is one of the crucial advantages when
imaging cells using CQDs, we further estimated cell death after incubating C2C12 cells with CQD-A.
For this, 15,000 cells were seeded to each of the cell culture wells. After 24 h of incubation, CQD-A
was added. The cells were counted before and 24 h after the addition of CQDs. The results (Figure 7)
showed that the CQD-A exhibited very low cytotoxicity. More than 96% of the cells were alive after
incubation of 24 h. This is in agreement with several studies published earlier using CQDs derived from
natural sources [8,9,42]. Considering that the doubling time of C2C12 cells is 15 h [41], an incubation
period of 24 h with CQDS was found to be ample for the purpose. Furthermore, the minimal extent
of cell death through cyto-toxicological effect, as exhibited by C2C12 cells in the presence of CQD-A,
is negligible. This further confirms that the synthesized CQDs can be used safely for imaging of cell
culture systems, and for other biological applications.

5
No. x10

45
24 h 24 h

40 '|' -|—

35

30 oh oh

25 T T

20

Number of cells

15

10

5

0

Control CcQb-A

Figure 7. Comparison of cell viability after incubating C2C12 cells with CQD-A for 24 h. The blue bar
represents the number of cells counted at 0 h and the orange bar represents the cells counted after 24 h
of incubation with either CQD-A or water as a control.
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3.4. Uptake of CQDs by Muscle Myotube and Imaging

Two-dimensional and three-dimensional cell culture model systems, apart from helping to
elucidate basic biochemical mechanisms, have tremendous potential in in vitro disease models,
tissue engineering, regenerative medicine, cell therapy, as well as for pharmaceutical applications,
especially, in drug discovery and development [43]. A simple, low cost, effective, and rapid staining
method, therefore, is crucial in different stages of these studies. Evidently, C2C12 cells are one such
model system used to study muscle myotube formation from myoblasts. Hence, staining different
stages of myotube formation becomes vital in these studies and, if successful, can be studied and
applied to other in vitro cell culture model systems and can also be further extended to animal models.

In order to test the ability of CQDS to stain myotubes, C2C12 cell myoblasts were cultured in
differentiation media to form myotubes. Several myoblasts fuse to form mature myotubes, thus giving
the appearance of multinucleated tubes. After the formation of myotubes in differentiation media,
CQD-A was added to the media containing myotubes and incubated for 24 h. The cells were
counterstained with nuclear specific stain DAPI to visualize the multinucleated structure. The Figure 8
shows that the CQDs were able to cross the membrane of myotubes and depict a clear image of
myotubes without any additional staining methods to visualize them.

50UM

Figure 8. Fluorescence image of C2C12 myotubes incubated with CQDs. (A) Control cells; (B) myotubes
incubated for 24 h with CQD-A; (C) myotubes incubated for 24 h with CQD-B. The images are from
FITC (green) and DAPI (blue) channels overlaid.

These experiments reveal the fluorescence characteristics of the CQDs and that they are easily
internalized, by both myoblasts and myotubes, illustrating their use in biological imaging. They are
also made from inexpensive sources, have very low cytotoxicity to live cells and human beings,
and require incubation time of only 24 h, making them cheaper and safer alternatives to the commercial
fluorescent dyes used in biological imaging.

4. Conclusions

Carbon quantum dots were fabricated from bread using a thermal process, and in the absence of
any undesirable chemicals, for the first time, and the resultant products were purified and characterized.
These CQDs exhibited excellent fluorescence and other favorable physical and chemical properties.
The intrinsic fluorescent property of the CQDs was successfully made use for imaging of C2C12
cells. The cytotoxicity of these biocompatible CQDs was found to be comparatively low, and hence
are excellent candidates for fluorescent bio-imaging sensors. This attribute was further extended
and successfully tested to image differentiated C2C12 myotubes. Given that the fabrication process
employed in the present work does not resort to conventional wet-chemistry procedures, this research
will open a new perspective in the subject area that warrants further investigations for optimizing and
scaling up the production of CQDs from bread. The preliminary results from bio-imaging experiments
also showed the potential applications of the CQDs, which should be extended to encompass various
cell/tissue culture systems and small animal models.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/8/1575/s1,
Figure S1: Contrast enhanced images of TEM. These images were used to count the CQDs for size
distribution histogram.
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