7 research outputs found

    The NLRP1 inflammasome in human skin and beyond

    Full text link
    Inflammasomes represent a group of protein complexes that contribute to host defense against pathogens and repair processes upon the induction of inflammation. However, aberrant and chronic inflammasome activation underlies the pathology of numerous common inflammatory diseases. Inflammasome assembly causes activation of the protease caspase-1 which in turn activates proinflammatory cytokines and induces a lytic type of cell death termed pyroptosis. Although NLRP1 (NACHT, leucine-rich repeat and pyrin domain containing 1) was the first inflammasome sensor, described almost 20 years ago, the molecular mechanisms underlying its activation and the resulting downstream events are incompletely understood. This is partially a consequence of the poor conservation of the NLRP1 pathway between human and mice. Moreover, recent evidence demonstrates a complex and multi-stage mechanism of NLRP1 inflammasome activation. In contrast to other inflammasome sensors, NLRP1 possesses protease activity required for proteolytic self-cleavage and activation mediated by the function-to-find domain (FIIND). CARD8 is a second FIIND protein and is expressed in humans but not in mice. In immune cells and AML (acute myeloid leukemia) cells, the anti-cancer drug talabostat induces CARD8 activation and causes caspase-1-dependent pyroptosis. In contrast, in human keratinocytes talabostat induces NLRP1 activation and massive proinflammatory cytokine activation. NLRP1 is regarded as the principal inflammasome sensor in human keratinocytes and UVB radiation induces its activation, which is believed to underlie the induction of sunburn. Moreover, gain-of-function mutations of NLRP1 cause inflammatory skin syndromes and a predisposition for the development of skin cancer. SNPs (single nucleotide polymorphisms) of NLRP1 are associated with several (auto)inflammatory diseases with a major skin phenotype, such as psoriasis or vitiligo. Here, we summarize knowledge about NLRP1 with emphasis on its role in human keratinocytes and skin. Due to its accessibility, pharmacological targeting of NLRP1 activation in epidermal keratinocytes represents a promising strategy for the treatment of the numerous patients suffering from NLRP1-dependent inflammatory skin conditions and cancer

    NLRP1 in Cutaneous SCCs: An Example of the Complex Roles of Inflammasomes in Cancer Development

    Full text link
    Protein complexes termed inflammasomes ensure tissue protection from pathogenic and sterile stressors by induction of inflammation. This is mediated by different caspase-1-induced downstream pathways, including activation of the pro-inflammatory cytokines proIL-1β and -18, induction of a lytic type of cell death, and regulation of the release of other pro-inflammatory molecules. Aberrant inflammasome activation underlies the pathology of numerous (auto)inflammatory diseases. Furthermore, inflammasomes support or suppress tumor development in a complex cell-type- and stage-dependent manner. In human keratinocytes and skin, NLRP1 is the central inflammasome sensor activated by cellular perturbation induced, for example, by UVB radiation. UVB represents the main inducer of skin cancer, which is the most common type of malignancy in humans. Recent evidence demonstrates that activation of NLRP1 in human skin supports the development of cutaneous squamous cell carcinomas (cSCCs) by inducing skin inflammation. In contrast, the NLRP1 inflammasome pathway is restrained in established cSCCs, suggesting that, at this stage, the protein complex has a tumor suppressor role. A better understanding of the complex functions of NLRP1 in the development of cSCCs and in general of inflammasomes in cancer might pave the way for novel strategies for cancer prevention and therapy. These strategies might include stage-specific modulation of inflammasome activation or its downstream pathways by mono- or combination therapy

    NLRP1 Inflammasome Activation in Keratinocytes: Increasing Evidence of Important Roles in Inflammatory Skin Diseases and Immunity

    Full text link
    In 2007, it was shown that DNA sequence variants of the human NLRP1 gene are associated with autoimmune and autoinflammatory diseases affecting mainly the skin. However, at that time, the underlying cellular and molecular mechanisms were poorly characterized. Meanwhile, increasing evidence suggests that the NLRP1 inflammasome expressed by keratinocytes not only plays a part in the pathology of common inflammatory skin diseases and cancer development but also contributes to skin immunity. Understanding the mechanisms regulating NLRP1 activation in keratinocytes and the downstream events in human skin might pave the way for developing novel strategies for treating patients suffering from NLRP1-mediated skin diseases

    The Pathways Underlying the Multiple Roles of p62 in Inflammation and Cancer

    No full text
    p62 is a highly conserved, multi-domain, and multi-functional adaptor protein critically involved in several important cellular processes. Via its pronounced domain architecture, p62 binds to numerous interaction partners, thereby influencing key pathways that regulate tissue homeostasis, inflammation, and several common diseases including cancer. Via binding of ubiquitin chains, p62 acts in an anti-inflammatory manner as an adaptor for the auto-, xeno-, and mitophagy-dependent degradation of proteins, pathogens, and mitochondria. Furthermore, p62 is a negative regulator of inflammasome complexes. The transcription factor Nrf2 regulates expression of a bundle of ROS detoxifying genes. p62 activates Nrf2 by interaction with and autophagosomal degradation of the Nrf2 inhibitor Keap1. Moreover, p62 activates mTOR, the central kinase of the mTORC1 sensor complex that controls cell proliferation and differentiation. Through different mechanisms, p62 acts as a positive regulator of the transcription factor NF-κB, a central player in inflammation and cancer development. Therefore, p62 represents not only a cargo receptor for autophagy, but also a central signaling hub, linking several important pro- and anti-inflammatory pathways. This review aims to summarize knowledge about the molecular mechanisms underlying the roles of p62 in health and disease. In particular, different types of tumors are characterized by deregulated levels of p62. The elucidation of how p62 contributes to inflammation and cancer progression at the molecular level might promote the development of novel therapeutic strategies

    Effectiveness of Transcutaneous Electrical Nerve Stimulation and Interferential Current in Primary Dysmenorrhea

    No full text
    Objective. To compare the effectiveness of transcutaneous electrical nerve stimulation and interferential current in primary dysmenorrhea. Design. A prospective, randomized, and controlled study. Setting. Hacettepe University School of Physical Therapy and Rehabilitation. Patients. Thirty-four volunteer subjects with primary dysmenorrhea (mean age: 21.35 +/- 1.70 years) were included. Statistical analyses were performed in 32 subjects who completed all measures. Interventions. Fifteen subjects received interferential current application for 20 minutes and 17 subjects received transcutaneous electrical nerve stimulation for 20 minutes when they were experiencing dysmenorrhea. Outcome Measures. Physical characteristics, years since menarche, length of menstrual cycle (days), and duration of menstruation (days) were recorded. Visual analog scale (VAS) intensities of menstrual pain, referred lower limb pain, and low back pain were recorded before treatment, and immediately, 8 hours, and 24 hours after treatment. Results. Intensities of the evaluated parameters decreased beginning from just after the applications in both groups (P 0.05). Conclusion. Both transcutaneous electrical nerve stimulation and interferential current appear to be effective in primary dysmenorrhea. As they are free from the potentially adverse effects of analgesics, and no adverse effects are reported in the literature nor observed in this study, a clinical trial of their effectiveness in comparison with untreated and placebo-treated control groups is warranted.WoSScopu

    The centrosome protein AKNA regulates neurogenesis via microtubule organization

    Get PDF
    The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors(1) that delaminate and settle in the subventricular zone in enlarged brain regions(2). The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination

    The WHO global alliance against chronic respiratory diseases in Turkey (GARD Turkey)

    No full text
    In order to prevent and control non-communicable diseases (NCDs), the 61st World Health Assembly has endorsed an NCD action plan (WHA resolution 61.14). A package for essential NCDs including chronic respiratory diseases (CRDs) has also been developed. The Global Alliance against Chronic Respiratory Diseases (GARD) is a new but rapidly developing voluntary alliance that is assisting World Health Organization (WHO) in the task of addressing NCDs at country level. The GARD approach was initiated in 2006. GARD Turkey is the first comprehensive programme developed by a government with all stakeholders of the country. This paper provides a summary of indicators of the prevalence and severity of chronic respiratory diseases in Turkey and the formation of GARD Turkey
    corecore