829 research outputs found

    The Dynamical Implications of Multiple Stellar Formation Events in Galactic Globular Clusters

    Get PDF
    Various galactic globular clusters display abundance anomalies that affect the morphology of their colour-magnitude diagrams. In this paper we consider the possibility of helium enhancement in the anomalous horizontal branch of NGC 2808. We examine the dynamics of a self-enrichment scenario in which an initial generation of stars with a top-heavy initial mass function enriches the interstellar medium with helium via the low-velocity ejecta of its asymptotic giant branch stars. This enriched medium then produces a second generation of stars which are themselves helium-enriched. We use a direct N-body approach to perform five simulations and conclude that such two-generation clusters are both possible and would not differ significantly from their single-generation counterparts on the basis of dynamics. We find, however, that the stellar populations of such clusters would differ from single-generation clusters with a standard initial mass function and in particular would be enhanced in white dwarf stars. We conclude, at least from the standpoint of dynamics, that two-generation globular clusters are feasible.Comment: 24 pages, 7 figures, 3 tables. Accepted for publication in Ap

    The Core Composition of a White Dwarf in a Close Double Degenerate System

    Full text link
    We report the identification of the double degenerate system NLTT 16249 that comprises a normal, hydrogen-rich (DA) white dwarf and a peculiar, carbon-polluted white dwarf (DQ) showing photospheric traces of nitrogen. We disentangled the observed spectra and constrained the properties of both stellar components. In the evolutionary scenario commonly applied to the sequence of DQ white dwarfs, both carbon and nitrogen would be dredged up from the core. The C/N abundance ratio (~ 50) in the atmosphere of this unique DQ white dwarf suggests the presence of unprocessed material (14N) in the core or in the envelope. Helium burning in the DQ progenitor may have terminated early on the red-giant branch after a mass-ejection event leaving unprocessed material in the core although current mass estimates do not favor the presence of a low-mass helium core. Alternatively, some nitrogen in the envelope may have survived an abridged helium-core burning phase prior to climbing the asymptotic giant-branch. Based on available data, we estimate a relatively short orbital period (P <~ 13 hrs) and on-going spectroscopic observations will help determine precise orbital parameters.Comment: Accepted for publication in ApJ Letter

    An ALMA view of CS and SiS around oxygen-rich AGB stars

    Full text link
    We aim to determine the distributions of molecular SiS and CS in the circumstellar envelopes of oxygen-rich asymptotic giant branch stars and how these distributions differ between stars that lose mass at different rates. In this study we analyse ALMA observations of SiS and CS emission lines for three oxygen-rich galactic AGB stars: IK Tau, with a moderately high mass-loss rate of 5×1065\times10^{-6}M_\odot yr1^{-1}, and W Hya and R Dor with low mass loss rates of 1×107\sim1\times10^{-7}M_\odot yr1^{-1}. These molecules are usually more abundant in carbon stars but the high sensitivity of ALMA allows us to detect their faint emission in the low mass-loss rate AGB stars. The high spatial resolution of ALMA also allows us to precisely determine the spatial distribution of these molecules in the circumstellar envelopes. We run radiative transfer models to calculate the molecular abundances and abundance distributions for each star. We find a spread of peak SiS abundances with 108\sim10^{-8} for R Dor, 107\sim10^{-7} for W Hya, and 3×106\sim3\times10^{-6} for IK Tau relative to H2_2. We find lower peak CS abundances of 7×109\sim7\times10^{-9} for R Dor, 7×108\sim7\times10^{-8} for W Hya and 4×107\sim4\times10^{-7} for IK Tau, with some stratifications in the abundance distributions. For IK Tau we also calculate abundances for the detected isotopologues: C34^{34}S, 29^{29}SiS, 30^{30}SiS, Si33^{33}S, Si34^{34}S, 29^{29}Si34^{34}S, and 30^{30}Si34^{34}S. Overall the isotopic ratios we derive for IK Tau suggest a lower metallicity than solar.Comment: 16 page

    Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    Get PDF
    The stellar population in the Galactic halo is characterised by a large fraction of CEMP stars. Most CEMP stars are enriched in ss-elements (CEMP-ss stars), and some of these are also enriched in rr-elements (CEMP-s/rs/r stars). One formation scenario proposed for CEMP stars invokes wind mass transfer in the past from a TP-AGB primary star to a less massive companion star which is presently observed. We generate low-metallicity populations of binary stars to reproduce the observed CEMP-star fraction. In addition, we aim to constrain our wind mass-transfer model and investigate under which conditions our synthetic populations reproduce observed abundance distributions. We compare the CEMP fractions and the abundance distributions determined from our synthetic populations with observations. Several physical parameters of the binary stellar population of the halo are uncertain, e.g. the initial mass function, the mass-ratio and orbital-period distributions, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population. The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The results of our comparison between the modelled and observed abundance distributions are different for CEMP-s/rs/r stars and for CEMP-ss stars. For the latter, our simulations qualitatively reproduce the observed distributions of C, Na, Sr, Ba, Eu, and Pb. Contrarily, for CEMP-s/rs/r stars our model cannot reproduce the large abundances of neutron-rich elements such as Ba, Eu, and Pb. This result is consistent with previous studies, and suggests that CEMP-s/rs/r stars experienced a different nucleosynthesis history to CEMP-ss stars.Comment: 17 pages, 11 figures, accepted for publication on Astronomy and Astrophysic

    Nucleosynthetic history of elements in the Galactic disk [X/Fe]-age relations from high-precision spectroscopy

    Get PDF
    Context. The chemical composition of stars is intimately linked to the formation and evolution of the Galaxy. Aims. We aim to trace the chemical evolution of the Galactic disk through the inspection of the [X/Fe]–age relations of 24 species from C to Eu. Methods. Using high-resolution and high signal-to-noise UVES spectra of nine solar twins, we obtained precise estimates of stellar ages and chemical abundances. These determinations have been integrated with additional accurate age and abundance determinations from recent spectroscopic studies of solar twins existing in the literature, comprising superb abundances with 0.01 dex precision. Based on this data set, we outlined the [X/Fe]–age relations over a time interval of 10 Gyr. Results. We present the [X/Fe] – age relations for 24 elements (C, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Ba, La, Ce, Nd, and Eu). Each different class of elements showed a distinct evolution with time that relies on the different characteristics, rates, and timescales of the nucleosynthesis sites from which they are produced. The α-elements are characterized by a [X/Fe] decrease with time. Strikingly, the opposite behavior is observed for Ca. The iron-peak elements show an early [X/Fe] increase followed by a decrease towards the youngest stars. The [X/Fe] for the n-capture elements decrease with age. We also found that both [Mg/Y] and [Al/Y] are precise stellar clocks, with [Al/Y] showing the steepest dependence on age. Conclusions. Knowledge of the [X/Fe]-age relations is a gold mine from which we can achieve a great understanding of the processes that governed the formation and evolution of the Milky Way. Through the reverse engineering of these relations we will be able to put strong constraints on the nature of the stellar formation history, the SNe rates, the stellar yields, and the variety of the SNe progenitors

    HI in four star-forming low-luminosity E/S0 and S0 galaxies

    Full text link
    We present HI data cubes of four low-luminosity early-type galaxies which are currently forming stars. These galaxies have absolute magnitudes in the range M_B=-17.9 to -19.9 (H_o=50 km/s/Mpc). Their HI masses range between a few times 10^8 and a few times 10^9 M_sun and the corresponding values for M_HI/L_B are between 0.07 and 0.42, so these systems are HI rich for their morphological type. In all four galaxies, the HI is strongly centrally concentrated with high central HI surface densities, in contrast to what is typically observed in more luminous early-type galaxies. In two galaxies (NGC 802 and ESO 118-G34), the kinematics of the HI suggests that the gas is in a strongly warped disk, which we take as evidence for recent accretion of HI. In the other two galaxies (NGC 2328 and ESO 027-G21) the HI must have been part of the systems for a considerable time. The HI properties of low-luminosity early-type galaxies appear to be systematically different from those of many more luminous early-type galaxies, and we suggest that these differences are due to a different evolution of the two classes. The star formation history of these galaxies remains unclear. Their UBV colours and Halpha emission-line strengths are consistent with having formed stars at a slowly-declining rate for most of the past 10^10 years. However, the current data do not rule out a small burst of recent star formation overlaid on an older stellar population.Comment: To appear in AJ, LateX, figures in gif format, paper also available at http://www.nfra.nl/~morganti/LowLu

    18 Sco: a solar twin rich in refractory and neutron-capture elements. Implications for chemical tagging

    Get PDF
    We study with unprecedented detail the chemical composition and stellar parameters of the solar twin 18 Sco in a strictly differential sense relative to the Sun. Our study is mainly based on high resolution (R ~ 110 000) high S/N (800-1000) VLT UVES spectra, which allow us to achieve a precision of about 0.005 dex in differential abundances. The effective temperature and surface gravity of 18 Sco are Teff = 5823+/-6 K and log g = 4.45+/-0.02 dex, i.e., 18 Sco is 46+/-6 K hotter than the Sun and log g is 0.01+/-0.02 dex higher. Its metallicity is [Fe/H] = 0.054+/-0.005 dex and its microturbulence velocity is +0.02+/-0.01 km/s higher than solar. Our precise stellar parameters and differential isochrone analysis show that 18 Sco has a mass of 1.04+/-0.02M_Sun and that it is ~1.6 Gyr younger than the Sun. We use precise HARPS radial velocities to search for planets, but none were detected. The chemical abundance pattern of 18 Sco displays a clear trend with condensation temperature, showing thus higher abundances of refractories in 18 Sco than in the Sun. Intriguingly, there are enhancements in the neutron-capture elements relative to the Sun. Despite the small element-to-element abundance differences among nearby n-capture elements (~0.02 dex), we successfully reproduce the r-process pattern in the solar system. This is independent evidence for the universality of the r-process. Our results have important implications for chemical tagging in our Galaxy and nucleosynthesis in general.Comment: ApJ, in pres

    C3PO: Towards a complete census of co-moving pairs of stars. I. High precision stellar parameters for 250 stars

    Full text link
    We conduct a line-by-line differential analysis of a sample of 125 co-moving pairs of stars (dwarfs and subgiants near solar metallicity). We obtain high precision stellar parameters with average uncertainties in effective temperature, surface gravity and metallicity of 16.5 K, 0.033 dex and 0.014 dex, respectively. We classify the co-moving pairs of stars into two groups, chemically homogeneous (conatal; |Delta[Fe/H]| \le 0.04 dex) and inhomogeneous (non-conatal), and examine the fraction of chemically homogeneous pairs as a function of separation and effective temperature. The four main conclusions from this study are: (1) A spatial separation of \ds = 106^6 AU is an approximate boundary between homogeneous and inhomogeneous pairs of stars, and we restrict our conclusions to only consider the 91 pairs with \ds \le 106^6 AU; (2) There is no trend between velocity separation and the fraction of chemically homogeneous pairs in the range \dv \le 4 \kms; (3) We confirm that the fraction of chemically inhomogeneous pairs increases with increasing \teff\ and the trend matches a toy model of that expected from planet ingestion; (4) Atomic diffusion is not the main cause of the chemical inhomogeneity. A major outcome from this study is a sample of 56 bright co-moving pairs of stars with chemical abundance differences \leq 0.02 dex (5\%) which is a level of chemical homogeneity comparable to that of the Hyades open cluster. These important objects can be used, in conjunction with star clusters and the \gaia\ ``benchmark'' stars, to calibrate stellar abundances from large-scale spectroscopic surveys.Comment: MNRAS in press (see source file for full versions of long tables
    corecore