13 research outputs found

    A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles

    Get PDF
    The flow refueling location problem (FRLP) locates p stations in order to maximize the flow volume that can be accommodated in a road network respecting the range limitations of the vehicles. This paper introduces the charging station location problem with plug-in hybrid electric vehicles (CSLP-PHEV) as a generalization of the FRLP. We consider not only the electric vehicles but also the plug-in hybrid electric vehicles when locating the stations. Furthermore, we accommodate multiple types of these vehicles with different ranges. Our objective is to maximize the vehicle-miles-traveled using electricity and thereby minimize the total cost of transportation under the existing cost structure between electricity and gasoline. This is also indirectly equivalent to maximizing the environmental benefits. We present an arc-cover formulation and a Benders decomposition algorithm as exact solution methodologies to solve the CSLP-PHEV. The decomposition algorithm is accelerated using Pareto-optimal cut generation schemes. The structure of the formulation allows us to construct the subproblem solutions, dual solutions and nondominated Pareto-optimal cuts as closed form expressions without having to solve any linear programs. This increases the efficiency of the decomposition algorithm by orders of magnitude and the results of the computational studies show that the proposed algorithm both accelerates the solution process and effectively handles instances of realistic size for both CSLP-PHEV and FRLP. © 2016 Elsevier Lt

    Solution methodologies for debris removal in disaster response

    Get PDF
    During the disaster response phase of the emergency relief, the aim is to reduce loss of human life by reaching disaster affected areas with relief items as soon as possible. Debris caused by the disaster blocks the roads and prevents emergency aid teams to access the disaster affected regions. Deciding which roads to clean to transport relief items is crucial to diminish the negative impact of a disaster on human health. Despite the significance of the problem during response phase, in the literature debris removal is mostly studied in the recovery or the reconstruction phases of a disaster. The aim of this study is providing solution methodologies for debris removal problem in the response phase in which effective and fast relief routing is of utmost importance. In particular, debris removal activities on certain blocked arcs have to be scheduled to reach a set of critical nodes such as schools and hospitals. To this end, two mathematical models are developed with different objectives. The first model aims to minimize the total time spent to reach all the critical nodes whereas the second minimizes the weighted sum of visiting times where weights indicate the priorities of critical nodes. Since obtaining solutions quickly is important in the early post-disaster, heuristic algorithms are also proposed. Two data sets belonging to Kartal and Bakırköy districts of İstanbul are used to test the mathematical models and heuristics. © 2016, EURO - The Association of European Operational Research Societies

    A branch and price approach for routing and refueling station location model

    Get PDF
    The deviation flow refueling location problem is to locate p refueling stations in order to maximize the flow volume that can be refueled respecting the range limitations of the alternative fuel vehicles and the shortest path deviation tolerances of the drivers. We first provide an enhanced compact model based on a combination of existing models in the literature for this relatively new operations research problem. We then extend this problem and introduce the refueling station location problem which adds the routing aspect of the individual drivers. Our proposed branch and price algorithm relaxes the simple path assumption generally adopted in the existing studies and implicitly takes into account deviation tolerances without the pregeneration of the routes. Therefore, the decrease in solution times with respect to existing models is significant and our algorithm scales very efficiently to more realistic network dimensions. © 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS). All rights reserved

    Restricted robust uniform matroid maximization under interval uncertainty

    Get PDF
    For the problem of selecting p items with interval objective function coefficients so as to maximize total profit, we introduce the r-restricted robust deviation criterion and seek solutions that minimize the r-restricted robust deviation. This new criterion increases the modeling power of the robust deviation (minmax regret) criterion by reducing the level of conservatism of the robust solution. It is shown that r-restricted robust deviation solutions can be computed efficiently. Results of experiments and comparisons with absolute robustness, robust deviation and restricted absolute robustness criteria are reported. © Springer-Verlag 2007

    Minimum cost path problem for Plug-in Hybrid Electric Vehicles

    Get PDF
    We introduce a practically important and theoretically challenging problem: finding the minimum cost path for PHEVs in a road network with refueling and charging stations. We show that this problem is NP-complete and present a mixed integer quadratically constrained formulation, a discrete approximation dynamic programming heuristic, and a shortest path heuristic as solution methodologies. Practical applications of the problem in transportation and logistics, considering specifically the long-distance trips, are discussed in detail. Through extensive computational experiments, significant insights are provided. In addition to the charging infrastructure availability, a driver's stopping tolerance arises as another critical factor affecting the transportation costs. © 2015 Elsevier Ltd

    Joint mixability of some integer matrices

    Get PDF
    We study the problem of permuting each column of a given matrix to achieve minimum maximal row sum or maximum minimal row sum, a problem of interest in probability theory and quantitative finance where quantiles of a random variable expressed as the sum of several random variables with unknown dependence structure are estimated. If the minimum maximal row sum is equal to the maximum minimal row sum the matrix has been termed jointly mixable (see e.g. Haus (2015), Wang and Wang (2015), Wang et al. (2013)). We show that the lack of joint mixability (the joint mixability gap) is not significant, i.e., the gap between the minimum maximal row sum and the maximum minimal row sum is either zero or one for a class of integer matrices including binary and complete consecutive integers matrices. For integer matrices where all entries are drawn from a given set of discrete values, we show that the gap can be as large as the difference between the maximal and minimal elements of the discrete set. The aforementioned result also leads to a polynomial-time approximation algorithm for matrices with restricted domain. Computing the gap for a {0,1,2}-matrix is proved to be equivalent to finding column permutations minimizing the difference between the maximum and minimum row sums. A polynomial procedure for computing the optimum difference by solving the maximum flow problem on an appropriate graph is given. © 2016 Elsevier B.V. All rights reserved

    The robust spanning tree problem with interval data

    Get PDF
    Motivated by telecommunications applications we investigate the minimum spanning tree problem where edge costs are interval numbers. Since minimum spanning trees depend on the realization of the edge costs, we define the robust spanning tree problem to hedge against the worst case contingency, and present a mixed integer programming formulation of the problem. We also define some useful optimality concepts, and present characterizations for these entities leading to polynomial time recognition algorithms. These entities are then used to preprocess a given graph with interval data prior to the solution of the robust spanning tree problem. Computational results show that these preprocessing procedures are quite effective in reducing the time to compute a robust spanning tree. © 2001 Elsevier Science B.V. All rights reserved

    A model and case study for efficient shelf usage and assortment analysis

    Get PDF
    In the rapidly changing environment of Fast Moving Consumer Goods sector where new product launches are frequent, retail channels need to reallocate their shelf spaces intelligently while keeping up their total profit margins, and to simultaneously avoid product pollution. In this paper we propose an optimization model which yields the optimal product mix on the shelf in terms of profitability, and thus helps the retailers to use their shelves more effectively. The model is applied to the shampoo product class at two regional supermarket chains. The results reveal not only a computationally viable model, but also substantial potential increases in the profitability after the reorganization of the product list. © 2008 Springer Science+Business Media, LLC

    Survivability in hierarchical telecommunications networks under dual homing

    Get PDF
    The motivation behind this study is the essential need for survivability in the telecommunications networks. An optical signal should find its destination even if the network experiences an occasional fiber cut. We consider the design of a two-level survivable telecommunications network. Terminals compiling the access layer communicate through hubs forming the backbone layer. To hedge against single link failures in the network, we require the backbone subgraph to be two-edge connected and the terminal nodes to connect to the backbone layer in a dual-homed fashion, i.e., at two distinct hubs. The underlying design problem partitions a given set of nodes into hubs and terminals, chooses a set of connections between the hubs such that the resulting backbone network is two-edge connected, and for each terminal chooses two hubs to provide the dual-homing backbone access. All of these decisions are jointly made based on some cost considerations. We give alternative formulations using cut inequalities, compare these formulations, provide a polyhedral analysis of the smallsized formulation, describe valid inequalities, study the associated separation problems, and design variable fixing rules. All of these findings are then utilized in devising an efficient branch-and-cut algorithm to solve this network design problem. © 2014 INFORMS

    Energy management in microgrids with plug-in electric vehicles, distributed energy resources and smart home appliances

    No full text
    Smart Grid is transforming the way energy is being generated and distributed today, leading to the development of environment-friendly, economic and efficient technologies such as plug-in electric vehicles (PEVs), distributed energy resources and smart appliances at homes. Among these technologies, PEVs pose both a risk by increasing the peak load as well as an opportunity for the existing energy management systems by discharging electricity with the help of Vehicle-to-grid (V2G) technology. These complications, together with the PEV battery degradation, compound the challenge in the management of existing energy systems. In this context, microgrids are proposed as an aggregation unit to smartly manage the energy exchange of these different state-of-the-art technologies. In this chapter, we consider a microgrid with a high level of PEV penetration into the transportation system, widespread utilization of smart appliances at homes, distributed energy generation and community-level electricity storage units. We propose a mixed integer linear programming energy management optimization model to schedule the charging and discharging times of PEVs, electricity storage units, and running times of smart appliances. Our findings show that simultaneous charging and discharging of PEV batteries and electricity storage units do not occur in model solutions due to system energy losses. © 2015 Springer Science+Business Media Singapore
    corecore