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Abstract During the disaster response phase of the emergency relief, the aim is to
reduce loss of human life by reaching disaster affected areas with relief items as soon
as possible. Debris caused by the disaster blocks the roads and prevents emergency
aid teams to access the disaster affected regions. Deciding which roads to clean to
transport relief items is crucial to diminish the negative impact of a disaster on human
health. Despite the significance of the problem during response phase, in the literature
debris removal is mostly studied in the recovery or the reconstruction phases of a
disaster. The aim of this study is providing solution methodologies for debris removal
problem in the response phase in which effective and fast relief routing is of utmost
importance. In particular, debris removal activities on certain blocked arcs have to be
scheduled to reach a set of critical nodes such as schools and hospitals. To this end,
two mathematical models are developed with different objectives. The first model
aims to minimize the total time spent to reach all the critical nodes whereas the second
minimizes the weighted sum of visiting times where weights indicate the priorities of
critical nodes. Since obtaining solutions quickly is important in the early post-disaster,
heuristic algorithms are also proposed. Two data sets belonging toKartal and Bakırköy
districts of İstanbul are used to test the mathematical models and heuristics.
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1 Introduction

From 1990 to 2012, average number of disasters observed each year was 340; each
resulting in 240 million victims on the average. Although the annual number of disas-
ters seems to decrease in 2012 and 2013, as seen in Fig. 1, it is still above 300; causing
thousands of lives and leaving millions of people without food, clean water, shelter
and medical care (EM-DAT 2013). To reduce further loss of life, providing emergency
relief items to the disaster affected people as soon as possible is of utmost importance.
Planning and organizing the flow of these items is called relief logistics and it is more
complex than business logistics due to the conditions created by the disaster (Sheu
2007).

Unfortunately, there are several examples in the recent history showing the unique
challenges possessed by the relief logistics.One of them is the lack of capable resources
to handle the situation or the lack of ability to activate the resources on time. During
Haiti earthquake in 2010 the limited ramp space of the airport and lack of fuel pre-
vented humanitarian flights from entering the country (Murphy 2010). Furthermore,
the uncertainties about demand may result in wrong or excessive donations which
complicate handling and storage operations. Damage in communication systems and
other infrastructure such as roads increases the complexity and difficulty in logistics.
Again in Haiti earthquake the port was damaged and could not handle large ships so
delivery of the emergency aids transported via ships were needed to be planned care-
fully. Involvement of many parties to control these resources creates another challenge
since they have to communicate and coordinate efficiently. This challenge was sadly

Fig. 1 Disaster trends in terms of occurrence number and victims (sum of deaths and total affected)
(EM-DAT 2013)
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faced by Hurricane Mitch in 1998 when it took weeks for The International Federa-
tion of Red Cross and Red Crescent Societies (IFRC) to coordinate and distribute the
donated reliefs (Samii et al. 2002).

When governments and institutions are not able to overcome these challenges,
the effects of the disaster last for a long period of time, like in the example of Haiti
earthquake; 98% of the debris remained after 6 months from the earthquake and made
the transportation impossible for the most part of the capital city (Lush 2010).

As these examples indicate, there are numerous factors to consider for relief logis-
tics to be planned systematically and performed effectively. Transportation of the relief
to the disaster affected people is one of, if not the most, significant aspects of relief
logistics because in the absence of these items and services loss of lives increases
drastically. There are many studies in the literature suggesting models to use in dis-
tribution and transportation of relief especially in the response phase of the disaster.
As summarized in the recent reviews by Caunhye et al. (2012) and de la Torre et al.
(2012) there are studies on relief transportation which incorporate different issues in
their problems and solution methodologies. Hence the studies not only differ in terms
of the operations research techniques but also in terms of the aspects of the problem
approached. The most common issues considered in relief transportation models are
vehicle characteristics such as number, type and capacity; number of depots, char-
acteristics of demand and supply, travel time, i.e., deterministic or stochastic. To the
best of our knowledge none of these models takes debris caused by the disaster into
consideration.

Debris is caused by destruction of structures and vegetation and they block the
roads and prevent accessibility to disaster affected areas. There are different type
of debris; construction, vegetative, hazardous waste, properties such as white goods,
vehicles, etc. (FEMA 2010). Hence debris differs from the normal waste in terms of
content and amount as Hurricane Katrina proved it by producing more than 50 times
the annual amount of daily solid waste in the USA in a few hours (Stephenson 2008).
There are a few studies on debris removal in the literature and they are mostly focused
on the recovery phase of the disaster aiming the complete removal and recycling
of debris. However, debris becomes an obstacle in the response phase by blocking
a road completely or partially and consequently complicates route determination in
relief transportation. In this study, we focus on the debris removal operations in the
response phase with relief routing incentives. Since the main goal is reaching disaster
affected areas as soon as possiblewe consider debris removal not as complete clearance
which takes months but as a sweeping operation so that wreckages are moved aside
and enough space is created for relief carrying vehicles to pass.

The problem, Debris Removal in the Response Phase (DRR) is defined as reaching
a set of predetermined critical disaster affected areas as soon as possible by traversing
roads which may be blocked due to debris (Sahin et al. 2015). The concept of a
predetermined set in this problem is the same as demand or delivery points in the
relief transportation problems. The novelty of the problem is the consideration of
the blocked roads and their usage at the expense of extra effort. This extra effort is
expressed by the amount of time which is needed to sweep the debris and make the
blocked arcs usable. Hence, the problem is a single vehicle routing problem which
differs from TSP in two aspects: first, there is a subset of nodes that should be visited,
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and second, to use the blocked arcs the vehicle must spend some extra time on those
arcs but only for their first usage. We can also interpret this extra time as a fixed
cost defined for a subset of arcs. DRR is first defined by Sahin et al. (2015) who
developed mathematical models and heuristics. One of the contributions of this paper
is proposing new mathematical model for DRR using less variables and hence leading
to computational efficiency. InDRR, each critical node is considered equally important
and the aim is to minimize the total time to visit all critical nodes. However, this
might not be realistic if the critical areas posses different characteristics in terms of
population and level of urgency. Therefore, we define another problem, Prioritized
Debris Removal in the Response Phase, (PDRR), in which the predetermined critical
nodes have priorities and the objective is minimizing the total weighted visiting times
of critical nodes.

We suggest mathematical models and heuristics for both problems. For the test of
our solution methodologies, we use two data sets from provinces of Istanbul which
faces a devastating earthquake almost in every century. Turkey is generally an earth-
quake prone country and statistics show that every 8 months a serious earthquake
occurs in Turkey (Tübitak 2005). One of the recent destructive earthquakes is Van
earthquake in 2011 which killed hundreds of people and injured thousands of them.
The most catastrophic earthquakes in Turkey in the last century in terms of magnitude
and casualties were Erzincan earthquake in 1939 and Marmara earthquake in 1999
which resulted in more than 17,000 casualties affecting more than a billion people.
Even though our computational study has the scope of debris removal after an earth-
quake, our solution methodologies are general enough to be applied to other types of
disasters such as tsunami, tornado and hurricane. We may need some adjustments in
the assumptions and the parameters according to the type and place of the disaster,
since the network features and debris characteristics depend on them. Our compu-
tational studies are based on residential districts of Istanbul and we assume that the
debris can be moved aside using a vehicle, e.g, a bulldozer. The problem is considered
as a single vehicle routing since each municipality has one such vehicle. As hurricanes
can affect larger regions and cause a larger amount of debris, it would be more realis-
tic to consider a multi-vehicle version of the problem with longer cleaning times for
blocked roads.

In the next sectionwe present a literature reviewon relief routing and debris removal
in relief logistics. In Sect. 3, the first problem, DRR, is introduced and the MIP model
and heuristics developed for this problem are described. In Sect. 4, we introduce our
second problem, PDDR, for which another MIP model and heuristics are developed
and presented. Section 5 describes the data sets and gives analyses of the computational
results. Section 6 concludes with the general discussion of the study.

2 Literature review

With the increase in the number of studies in humanitarian logistics especially after
2000, various surveys are conducted. Altay andGreen (2006) group the studies accord-
ing to their place in the disaster timeline together with the solution methodologies and
disaster type. Apte (2010) provides definitions, highlights the differences of human-
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itarian with other types of logistics while reviewing proposed models. The studies
in the review by Caunhye et al. (2012) are categorized operationally as facility loca-
tion, stock prepositioning, relief distribution and casualty transportation. de la Torre
et al. (2012) focus on the research involving relief routing and classify them using
the problem characteristics. Galindo and Batta (2013) review studies between 2005
and 2010 and compare them with the ones in Altay and Green (2006), then state and
criticize the assumptions. Özdamar and Ertem (2014) provide a survey on the models
developed for the response and recovery planning phases including the information
system applications.

Since our study involves relief routing and debris removal, we focus on those studies
in the literature. We first group the relief routing models according to the problem
characteristics; whether it includes location decisions and casualty transportation or
both. Then these models are examined in terms of more detailed features such as the
fleet type, demand/supply, depots, commodities, etc. In the second part, we discuss
research regarding debris removal which is mostly studied in the recovery phase.

2.1 Relief routing

One of the studies including relief routing with location and stock preposition is done
by Chang et al. (2007) in flood emergency logistics. The problem is formulated as
a two-stage stochastic programming problem where the first stage decisions are the
locations of the local rescue bases. In the second stage, the number of equipments
in each base, the allocation of the rescue teams and the flow of relief are decided.
Mete and Zabinsky (2010) also propose a two-stage stochastic programming model of
locating and distributing medical supplies. In their model, the second stage decision
solely includes transportation, where locations and inventory levels are decided in the
first one. They present a case study for earthquake scenarios in Seattle area. Duran
et al. (2011) give a MIP formulation in which the decisions of which warehouse to
open, the quantity of the commodities in the warehouses and the flows are jointly
made. Rawls and Turnquist (2009) include uncertainty in both demand and network in
their two-stage stochastic mixed integer program. Wang et al. (2014) use a nonlinear
integer model which decides on the location of the distribution centers and routing
of relief. They define reliabilities for each arc, which correspond to probability of
successful traversal, and the reliability is included in the objective together with time
and cost.

Afshar and Haghani (2012) develop a model for relief routing and locating tem-
porary facilities following FEMA’s logistic structure. Van Hentenryck et al. (2010)
combine storage and routing decisions in their single commodity allocation problem
defined for disaster recovery. The problem is to decide the set of depots to use, the
amount of supply and the customer allocation to these depots. They use scenarios to
model the stochasticity of the supply, demand and the infrastructure damage. Hence
in the study damaged roads are taken into consideration by stochastic travel times.

Although the majority of the relief routing models focus solely on the routing
decisions, still there are many studies which include casualty transportation. Most of
these models are multi-period, deterministic and they both include resource allocation
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and flowdecisions (Haghani andOh1996;Barbarosoglu andArda 2004;Yi andKumar
2007; Yi and Özdamar 2007).

Although the researchers’ approach to the relief routing problem and the assump-
tions differ, there are some structures that are commonly used to model this problem.
In the relief logistics literature, the majority of the researchers focus on multi-period
and multi-commodity routing problems. Balçık and Beamon (2008) present such an
MIPmodel with a tour-based formulation. The aim is to deliver relief items to demand
points with minimum cost and unsatisfied demand. To incorporate the damaged roads
in the model, they define the travel times according to the vehicle types so the travel
time is taken very large for a specific type of vehicle if it is not possible for that type to
use the road. In their multi period, multi-commodity relief distribution model, Tzeng
et al. (2007) assume that the road condition is known but the relief is delivered only to
the accessible areas. Lin et al. (2011) also propose a multi-period, multi-commodity
MIP but with soft time windows. Their formulation is tour-based and for efficiency of
the solution process the number of available tours are limited. They allow split deliv-
ery and they minimize the total time and unsatisfied demand together. Berkoune et al.
(2012) define their relief routing problem similar to the one in Balçık and Beamon
(2008). In addition to the weight and volume capacities they consider a limit on the
traveling time per day. Sharif and Salari (2015) use a different approach to model the
relief routing problem; they combine Open Vehicle Routing Problem with Covering
Salesman Problem. There is heterogeneous set of vehicles that depart from a single
depot and the demand is met either by visiting the node or by coverage. In addition,
there are some studieswhich proposeMIPmodels together with analyses on the effects
of different objectives (Campbell et al. 2008; Huang et al. 2012).

From these studies, we observe that although the damage on roads are considered
in some relief routing problems, using such roads at the expense of extra effort is not
taken as an option. Next, we will examine the studies that mainly focus on debris
removal and related road reconstruction studies.

2.2 Debris removal

Çelik et al. (2015) group the debris-related operations in disaster timeline where debris
clearance is under response phase and debris collection is categorized as a recovery
operation. This classification is due to difference in the priorities in those phases and
their durations. In the studies on the debris collection, the aim is to remove the debris
completely and properly dispose of it. Such a study is done by Fetter and Rakes
(2012) who propose a facility location model which aims to maximize recycling with
minimum cost. The model decides where to locate temporary disposal and storage
reduction (TDSR) facilities among a set of possible locations. TDSRs may posses dif-
ferent technologies and they incur fixed and technological costs which are minimized
together with the cost of collecting and transporting debris.

Hu and Sheu (2013) incorporate psychological effects of debris into the debris
collection. They develop a multi-objective model which includes three conflicting
costs: logistical, risk-induced andpsychological. Logistical costs consist of operational
costs related to transportation and recycling of debris. Risk-induced cost includes
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environmental risks associated with uncollected debris, storages and transportation. In
psychological cost both disaster victims and peopleworking in the recovery operations
are considered.

The operation that we call debris removal or clearance is mostly referred to as road
or network reconstruction or restoration in the literature. Chen and Tzeng (1999) study
road construction in the recovery phase of a disaster. Feng andWang (2003) develop a
scheduling model for the response phase in which roads are repaired by work groups
to maximize accessibility to the disaster affected people. Averbakh (2012) schedules
the restoration of damaged edges after a disaster. There are multiple servers that repair
roads to reach nodes. The time that the nodes are reached are called recovery times
and the objective is to minimize these times. The unrealistic assumption in the model
is negligence of the travel time of servers in the restored roads. Another network
construction problem is studied by Averbakh and Pereira (2012) where the aim is to
minimize the weighted total recovery time of all vertices. The recovery of a vertex is
accomplishedwhen it is connected thedepot by the constructionof the necessary edges.
Both exact solutionmethods and fast heuristics are proposed in the article. In their latest
study on network construction problem,Averbakh and Pereira (2015) consider vertices
with due dates with two objectives: minimizing themaximum lateness andminimizing
the number of tardy vertices. In all of these problems on network construction, the
construction speed is taken incomparably slower than the travel speed.

Nurre et al. (2012) present a network design and scheduling problem to maximize
the weighted sum of flow by deciding on which arcs to restore and add to the network.
The restoration is done by work groups which need to be scheduled. Although the
problem is multi-period the restoration does not necessarily go through all periods.
Themodel can stop the restoration at any time since the aim is tomaximize the total flow
at the end of the restoration. Nurre and Sharkey (2014) propose a heuristic dispatching
rule algorithm for the integrated network design and scheduling problem which has
three main decisions: deciding the components of the network to improve, assigning
the machines to these components and sequencing the processes on the machines
which are parallel and identical. The performance of the network is measured by
solving classical network optimization problems, i.e., maximum flow, minimum cost
flow, shortest path and minimum spanning tree.

Aksu and Ozdamar (2014) focus on the first 3 days of the response phase and
the problem is to gain accessibility to all locations as soon as possible by restoring
links. Each node is required to be connected to a relief center and debris dump site;
this connection is represented by access paths that are defined for each node. Hence
the aim is to clean roads to make access paths clear in a given time. The objective
maximizes the total weighted earliness of access paths’ restoration times thus if a path
is not clear it is not included in the objective.

The studies mentioned above make the assumption that the locations and the repair
times of the damaged roads are known. Çelik et al. (2015) study the debris clearance
problem where the location of the blocked arcs are known but the amount of resource
required to clean a subset of blocked arcs is stochastic. The problem is multi-period
and a schedule is made for the subsequent period in the beginning of each period. The
objective is to maximize the total weighted flow sent to demand nodes by connecting
the nodes to the supply with debris clearance. As in the study by Averbakh (2012) the
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travel times of the undamaged or cleaned arcs are neglected in this study, assuming
that clearance times are very high compared to the travel times.

Pramudita et al. (2014) study location and routing problemsof debris collection after
disasters and use Location-Capacitated Vehicle Routing Problem (L-CVRP) formula-
tion. Although the problem sounds similar to ours, the assumptions and the decisions
taken by models make them distinct. In this study along with the routing, there is a
location problem on the disposal sites and the allocation of the demands, blocked arcs,
to this disposal sites. All blocked arcs have to be cleaned and it is assumed that the
only path between two nodes is the shortest path. Furthermore, they define a matrix
called access possibility to represent the condition of the arcs. The values of this matrix
should be updated each time a required node is visited and it is referred to as a dynamic
constraint but it is not clear how the matrix is updated in the model.

As previously stated in Sect. 1, Debris Removal in the Response Phase is first
defined by Sahin et al. (2015). In the study a four indexed MIP model is suggested
under the assumption that the blocked arcs and the time required to clean them are
known. The model aims to minimize the total time spent to reach all the critical nodes.
Construction and improvement heuristics are also developed for the problem. In the
next section we describe the problem in detail and present our improved solution
methodologies.

3 Debris removal in the response phase

3.1 Problem setting

Debris Removal in the Response Phase (DRR) is the problem of determining the
route among the critical nodes and deciding on which roads to clean. Critical nodes,
mostly stated as demand points in many studies, correspond to areas that need urgent
relief. We consider these nodes as schools, hospitals and possible shelter areas. Debris
caused by the disaster prevents accessibility to some roads which we call blocked arcs.
We assume that the location of the blocked arcs is known and opening these arcs to
traverse is a decision made by the model. The demands and supplies are not included
in the model because the problem is considered just after the disaster in which even
partial knowledge on these is not available. As stated by Apte (2010) this distinguishes
disaster response from humanitarian relief during which there exists more information
available on needs and less chaotic environment compared to response phase.

Therefore, in this phase we focus on making the critical locations reachable by
routing a single vehicle among the critical nodes. For relief items and emergency aid
teams to reach these critical locations there should be at least one path to those nodes
from the supply node. By routing a single vehicle among all nodes, we make sure a
debris-free route exits among them.

Let G = (N , A) be a complete and symmetric graph where N is the node set,
partitioned into the critical nodes setC and noncritical nodes set NC , and A constitutes
the arc set of the network. s denotes the supply node and s ∈ C . Time required for
traversing arc (i, j) ∈ A is ti j and parameter Ii j takes value 0 if the arc (i, j) is blocked
and is 1 otherwise. The effort spent on cleaning a blocked arc is measured in terms
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Fig. 2 Original network G = (N , A) (left), new network (right) G′ = (N ′, A′) where dotted nodes and
arcs are artificial

of time and it is denoted by ci j for arc (i, j). Thus the time required to traverse a
blocked arc (i, j) for the first time is ti j + ci j . Since the network is symmetric if (i, j)
is blocked so is ( j, i) and removing debris on one of them makes both of them clean.
Furthermore, it is assumed that an unblocked arc cannot be blocked again so for the
subsequent usages of the arc only ti j amount of time is spent.

To be able to formulate the problem using three index variables, we duplicated
the critical nodes and adjacent arcs. Hence, each critical node k ∈ C has a duplicated
version k′. These duplicated critical nodes are represented by setC ′ and they are treated
as noncritical nodes. Thus we have a new noncritical node set; NC ′ = NC ∪C ′. The
set of all nodes, N ′, consist of the original critical set C and the new noncritical set
NC ′. Since the adjacent arcs are also duplicated we define a new arc set A′ = A∪
{(k′, j), ( j, k′) : k′ ∈ C ′, j ∈ N : j �= k} ∪ (k′, l ′) : k′, l ′ ∈ C ′, k′ �= l ′}.

In Fig. 2 above an example of duplication of nodes and arcs in a small network is
illustrated. The nodes k and l are original critical nodes where node i is an original
noncritical node. The dotted nodes and arcs are the duplicated ones included in the new
network. These artificial arcs have the same parameter values with the original ones so
tk′i = tki , tk′l ′ = tkl , etc. If the original arc (k, i) is blocked then (k′, i) is also blocked
and cleaning one of them makes all of them clean. We model the problem using this
new graph G ′ = (N ′, A′). In the problem, the critical nodes are free to be used as
intermediate nodes so the optimal route may require revisiting critical node m while
going from critical node k to critical node l. To make this possible in the 3-indexed
formulation, we create the duplicated critical nodes which act like noncritical ones. In
the next subsection we give the formulation and explain the constraints together with
the necessity of the creating this new graph in detail.

3.2 Proposed model

Under this setting, we formulate the problem as anMIPmodelwhich is a reformulation
of the one in Sahin et al. (2015). The decision variables are as follows:
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ykl = 1 if l ∈ C is the first critical node visited after k ∈ C (possibly with

noncritical nodes in between) and 0 otherwise

xki j = 1 if (i, j) ∈ A′ is traversed while going to critical node k from the previous

critical node, and 0 otherwise

Ck = time spent to reach critical node k ∈ C\s from the previous critical node

(the time required for debris removal not included)

B ′
i j = 1 if (i, j) ∈ A′ is cleaned, and 0 otherwise

Bi j = 1 if (i, j) ∈ A is cleaned, and 0 otherwise

pk = time that node k ∈ C is reached (debris removal not included)

TT = total travel time spent to visit all critical nodes (debris removal not included)

Before the formulation, we would like to note that the objective is to minimize the
total time to visit all critical nodes. Thus, although the mathematical model implies
that the vehicle returns to the supply node, the time spent on this return trip is not
relevant and not included in the objective function.

Thismodelminimizes the total time spent to visit all the critical nodes. The total time
includes the regular traveling time and the time for the debris removal on the blocked
arcs that are chosen to be used. Constraints (2) and (3) ensure that each critical node
except the supply node has exactly one predecessor and successor critical node to form
a visiting order. (4) guarantees that supply node is predecessor of exactly one of the
critical nodes. These three assignment constraints construct a closed tour. Since (10)
makes the visiting time of the supply node equal to zero, it ensures that the tour starts
from the supply node.

(5), (6) and (7) jointly construct the paths among the critical nodes and they are the
reason behind the duplication. If critical node l is visited right after critical node k, (5)
ensures that the vehicle leaves k to go to l. The vehicle may go to the node l directly
or it can first go to a noncritical node j ∈ NC ′. For the latter case, if vehicle visits
an intermediate node j to reach a critical node k, (6) ensures that the vehicle leaves
this node; in other words, it makes the total flow entering j and leaving j equal. In
this constraint, the first summation is over all nodes since the vehicle can depart from
any node and the second sum is over the all noncritical nodes and the targeted critical
node k. Constraint (7) guarantees that there is a flow entering each critical node.

min TT +
∑

i, j∈N :i< j

ci j Bi j (1)

s.t.
∑

l∈C : l �=k

ylk = 1 ∀k ∈ C\{s} (2)

∑

l∈C : l �=k

ykl = 1 ∀k ∈ C\{s} (3)
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∑

l∈C\{s}
ysl = 1 (4)

∑

j∈NC ′∪{l}
xlk j = ykl ∀k, l ∈ C k �= l (5)

∑

i∈N ′
xki j −

∑

h∈NC ′∪{k}
xkjh = 0 ∀k ∈ C ∀ j ∈ NC ′ (6)

∑

i∈N ′
xlil = 1 ∀l ∈ C\{s} (7)

Cl =
∑

i, j∈N ′
xli j ti j ∀l ∈ C\{s} (8)

pl ≥ pk + Cl − (1 − ykl)M ∀k ∈ C, l ∈ C\{s} (9)

ps = 0 (10)

TT ≥ pk ∀k ∈ C (11)

ykl + ylk ≤ 1 ∀k, l ∈ C, k �= l (12)

B ′
i j ≤ 1 − Ii j ∀i, j ∈ N ′ : i < j (13)
∑

l∈C\S
(xli j + xlji ) ≤ |C |(B ′

i j + Ii j ) ∀i, j ∈ N ′ : i < j (14)

B ′
i j + B ′

i j ′ + B ′
i ′ j ′ + B ′

j i ′ ≤ 4Bi j ∀i, j ∈ C,∀i ′, j ′ ∈ C ′ (15)

B ′
i j + B ′

i j ′ ≤ 2Bi j ∀i ∈ NC, j ∈ C : i < j (16)

B ′
j i + B ′

i j ′ ≤ 2Bi j ∀i ∈ NC, j ∈ C : i > j (17)

B ′
i j ≤ Bi j ∀i, j ∈ N : i < j (18)

xki j ∈ (0, 1) ∀i, j ∈ N ′, ∀k ∈ C (19)

Ck ≥ 0 ∀k ∈ C (20)

B ′
i j ∈ (0, 1) ∀i, j ∈ N ′ (21)

Bi j ∈ (0, 1) ∀i, j ∈ N (22)

ykl ∈ (0, 1) ∀k, l ∈ C (23)

pk ≥ 0 ∀k ∈ C (24)

TT ≥ 0 (25)

(8) calculates the travel time to go to critical node l from the previous critical node. (9)
assigns visiting times of critical nodes, excluding the time spent on debris removal and
this constraint prevents sub-tours. (11) and the objective together force TT to be equal
to the visiting time of the last visited critical node. (12) is a simple valid inequality
that says either k precedes l, l precedes k or they are not consecutively visited critical
nodes.

(13) ensures that only a blocked arc can be cleaned. When an arc in set A′ is
traversed, if the arc is blocked, the corresponding B ′ variable becomes 1 due to con-
straint (14) and indicates that the arc is cleaned. If both an original arc, say (k, j) and
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an duplicated version of it, say (k′, j) are cleaned then both B ′
k′ j = 1 and B ′

k j = 1. If
we use variables B ′ in the objective then the cleaning time would be counted twice.
However, arcs (k, j) and (k′, j) actually correspond to the same arc, thus the cleaning
time should be added to the objective only once. This is guaranteed by the variable
Bi j which is defined for all (i, j) ∈ A. By constraints (15)–(18) we ensure that Bi j is
1 if the vehicle uses the original blocked arc (i, j) or one of its duplicated versions.

In the problem, as mentioned earlier the critical nodes are free to be used as inter-
mediate nodes. If we do not duplicate the critical nodes, this formulation does not
allow a second visit to any critical node. Suppose that the vehicle visits critical node k
for the first time and critical node l is to be visited next so ykl = 1. Then by constraint
(5) xlk j = 1 for some node j . If the vehicle revisits critical node k, say to reach critical
node m, then by constraint (6), which assures flow conservation, xmk j must be 1 for
some j . This is possible only if ykm = 1 and it cannot be since ykl = 1. Hence a critical
node should be visited only once if the original network is used in the formulation.
By duplicating the critical nodes, we allow the vehicle to visit a critical node more
than once because the duplicated nodes are treated as noncritical. Thus, while going
to critical node m, the vehicle visits k′ which actually means it is revisiting critical
node k.

Since in disaster response phase decisions must be taken quickly, we developed
heuristics to get near optimal solutions faster, especially for the caseswhen the network
is large.

3.3 Heuristic: routing with shortest paths

We develop a heuristic, Routing with Shortest Paths (RSP), which makes the route
construction similar to the tour in the Traveling Salesman Problem (TSP). Since in
TSP the vehicle visits each node, we focus on the critical nodes and assume that the
vehicle goes from one critical node to the other directly. This direct way is the shortest
path between these critical nodes. In other words, we fix the path that can be used
between two critical nodes; to go to l ∈ C from k ∈ C the vehicle uses the shortest
path between k and l. Thus the problem becomes finding a visiting order among the
critical nodes using the shortest path lengths.

In this approach, we need to pay attention that blocked arcs can be used in these
shortest paths and their cleaning times should be included in the path lengths. Hence
there is a possibility that two or more shortest paths use and clean the same blocked
arc. Since these paths are calculated separately they both include the cleaning time of
the blocked arc. Hence we need to modify the regular TSP formulation so that if there
is blocked arc used in the chosen shortest paths its cleaning time is taken only once.

This solutionmethodmaynot result in anoptimal solution since it calculates shortest
paths between each node pair separately and consequently overlook the benefit of
clearing a blocked arc that does not lie on a shortest path between two critical nodes
to reduce the total route time. There may exist a blocked arc (i, j) which is not on
any of the shortest paths, but the cleaning and using this arc more than once may give
smaller route time than the one found using RSP.
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First we apply Dijkstra’s algorithm to find the shortest paths among the critical
nodes. The travel time of arc (i, j) is taken as ti j +ci j (1− Ii, j ) to include the cleaning
times. Then anMIPmodel is solved to find the visiting order among the critical nodes.
The formulation is based on the original network G. The arcs that are used in the
shortest path between critical nodes k and l is listed in the set Pkl for all k, l ∈ C and
the time of this path is denoted as timekl . The decision variables are as follows:

ykl = 1 if l ∈ C is the first critical node visited after k ∈ C (possibly with

noncritical nodes in between) and 0 otherwise

xi j = 1 if (i, j) ∈ A is used, and 0 otherwise

Bi j = 1 if (i, j) ∈ A is cleaned, and 0 otherwise

pk = time that node k ∈ C is reached (debris removal not included)

TT = total travel time spent to visit all critical nodes (debris removal not included)

min TT +
∑

i, j∈N :i< j

ci j Bi j (1 − Ii j ) (26)

s.t.
∑

l∈C : l �=k

ylk = 1 ∀k ∈ C (27)

∑

l∈C : l �=k

ykl = 1 ∀k ∈ C (28)

ykl ≤ xi j ∀k, l ∈ C l �= s,∀(i, j) ∈ Pkl (29)

xi j + x ji ≤ 2Bi j ∀i, j ∈ N (30)

pl ≥ pk + timekl − (1 − ykl)M ∀k ∈ C, l ∈ C\{s} (31)

(10–11), (22–25)

xi j ∈ (0, 1) ∀i, j ∈ N (32)

First two constraints are the classical TSP assignment constraints among the critical
nodes. (29) ensures that if l is visited after k then arcs in the shortest path between
k and l are used. (30) implies that a blocked road must be cleaned if it is used. (31)
assigns the visiting times of critical nodes. The total travel time and the cleaning time
is minimized with the objective function. Here the variable TT corresponds to the total
travel time spent to reach all critical nodes since it is maximum of pk variables and
the cleaning times of the blocked arcs that are used in the shortest paths are added
separately to the objective.

We tested the RSP heuristic and theMIP formulation for DRR using data sets which
will be described in Sect. 5. These solution methodologies are compared in terms of
solution times and the solution quality. Now we move to the next problem, namely,
the Prioritized Debris Removal during Response Phase (PDRR).
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4 Prioritized debris removal during response phase

4.1 Problem setting

Treating each critical node equally might not be realistic since the characteristics
of the nodes differ. It is reasonable to give some nodes priority if they are highly
populated or more vulnerable. When the amount of debris, the number of blocked arcs
and the number of critical nodes are high, the time spent to reach all nodes may take
hours. Therefore, considering the weights or priorities of critical nodes and reaching
the higher weighted ones sooner increases the overall benefit. For that purpose we
developed a second model which minimizes the weighted sum of visiting times. The
same network, G ′, is used to formulate the problem. The weights of the critical nodes
are denoted by wk for k ∈ C for this model.

4.2 Proposed model

In theDRRmodel the variable pk corresponds to the time that critical node k is reached
but only considering the travel times. To minimize the weighted visiting times actual
visiting times are needed. Thus, if an arc (i, j) is cleaned while going to critical node
k, the time required for debris removal should be included in pk . Therefore we need
to know which arc is cleaned to reach a specific critical node. Since an arc remains
open once it is cleaned, spending debris removal time on that arc in the next usages
must be prevented as in the first problem. To ensure that we need to know whether
a critical node is visited earlier or later than another critical node and guarantee that
a blocked arc is cleaned on its first usage. This necessitates different set of decision
variables. Below the decision variables used in this formulation are given and the new
ones are indicated in bold.

ykl = 1 if l ∈ C is the first critical node visited after k ∈ C (possibly with

noncritical nodes in between) and 0 otherwise

xki j = 1 if (i, j) ∈ A′ is traversed while going to critical node k from the previous

critical node

Ck = time spent to reach critical node k ∈ C\s from the previous critical node

(the time required for debris removal not included)

akl = 1 if l ∈ C is visited after k ∈ C, and 0 otherwise

vk
ij = 1 if (i, j) ∈ A′ is cleaned to reach node k ∈ C, and 0 otherwise

rk = time that node k ∈ C is reached

The variable akl is different than ykl since it takes value 1 if critical node k is visited
any time before critical node l, not only when they are consecutively visited. This
variable is required to add the cleaning time of an arc to the right visiting time and it
is explained in detail after the formulation. Moreover due to this variable, the vehicle
no longer can form a closed tour so it starts from the supply node but does not return
to it. Hence the path finishes when the last critical node is visited.
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min
∑

k∈C\{s}
wkrk (33)

s.t.

(5–8), 12
∑

k∈C : k �=l

ykl = 1 ∀l ∈ C\{s} (34)

∑

k∈C,l∈C\{s}: k �=l

ykl = |C\{s}| (35)

∑

l∈C : l �=k

ykl ≤ 1 ∀k ∈ C (36)

akl ≥ ykl ∀k, l ∈ C (37)

akl + alk = 1 ∀k, l ∈ C, k �= l (38)

aml ≥ amk + ykl − 1 ∀k, l,m ∈ C, k �= l (39)

asl = 1 ∀l ∈ C\{s} (40)

rs = 0 (41)

rl ≥ rk + Cl +
∑

i, j∈N :i< j

vki j ci j + (1 − ykl)M ∀k ∈ C ∀l ∈ C\{s}

(42)
∑

l∈C\{s}
vli j ≤ 1 − Ii j ∀i, j ∈ N : i < j (43)

2 − vli j ≥ xki j + xkji + xki ′ j + xkji ′+
xkj ′i + xki j ′ + xki ′ j ′ + xkj ′i ′ + akl ∀i, j, k, l ∈ C : i < j, Ii j = 0, k �= l

(44)

2 − vli j ≥ xki j + xkji + xki ′ j + xkji ′ + akl ∀i, k, l∈C, j ∈ NC : i< j, Ii j =0, k �= l

(45)

2 − vlj i ≥ xki j + xkji + xki ′ j + xki ′ j + akl ∀i, k, l∈C, j ∈ NC : i> j, Ii j =0, k �= l

(46)

2 − vli j ≥ xki j + xkji + akl ∀k,l∈C, i, j ∈NC : i< j, Ii j =0, k �= l

(47)

|C\{s}|
∑

k∈C\{s}
vki j ≥

∑

k∈C\{s}
(xki j + xkji + xki ′ j + xkji ′ + xkj ′i + xki j ′ + xki ′ j ′ + xkj ′i ′)

∀i, j ∈C\{s} : Ii j = 0, i< j (48)

|C\{s}|
∑

k∈C\{s}
vki j ≥

∑

k∈C\{s}
(xki j +xkji +xki ′ j +xkji ′)

∀i ∈C\{s}, j ∈NC : Ii j =0, i< j (49)
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|C\{s}|
∑

k∈C\{s}
vkji ≥

∑

k∈C\{s}
(xki j +xkji +xki ′ j +xkji ′)

∀i ∈C\{s}, j ∈NC : Ii j =0, i> j (50)

|C\{s}|
∑

k∈C\{s}
vki j ≥

∑

k∈C\{s}
(xki j + xkji ) ∀i, j ∈ NC : Ii j = 0, i < j

(51)

xki j ∈ (0, 1) ∀i, j ∈ N ′, ∀k ∈ C (52)

vki j ∈ (0, 1) ∀i, j ∈ N , ∀k ∈ C (53)

akl , ykl ∈ (0, 1) ∀k, l ∈ C (54)

rk,Ck ≥ 0 ∀k ∈ C (55)

Constraint (34) ensures that each critical node except the supply node has a predecessor
critical node. (35) limits the total number of assignments to the number of critical
nodes that we need to reach. (36) implies that a critical node may have a successor
critical node or not. These are different than the assignment constraints of the previous
formulation because the vehicle does not return to the supply node. This is needed
because of the variable akl and constraint (38) which assures either k ∈ C is visited
before l ∈ C or vice versa.

By (37) if k ∈ C is visited just before l ∈ C then k is visited before l and by (39)
we satisfy that any critical node m which is visited before k is also visited before l.
The supply node is guaranteed to be the start node with constraints (40) and (41).
Constraint (42) eliminates sub-tours between critical nodes and assigns visiting times
including the time spent on debris removal. Thus if an arc (i, j) is cleaned while going
to critical node k, its cleaning time ci j is added to rk .

With (43) it is guaranteed that an arc is cleaned only once and only if it is blocked.
Constraints (44)–(47) prevent a blocked arc from being cleaned in latter usage. For
example if a blocked arc (i, j) or one of its artificial versions have been traversed while
going to critical node k and if k is visited before critical node l, then (i, j) cannot be
cleaned while going to critical node l. Constraints (48)–(51) ensure that a blocked arc
is cleaned while going to a critical node to be traversed to reach any critical node.
Hence a blocked arc (i, j) is cleaned if it is used at least once. These last constraints
(44)–(51) together guarantee that when a blocked arc is used, it is cleaned once and
debris is removed on its first usage.

4.3 Heuristic: prioritized routing with shortest paths

For the problem Prioritized Debris Removal in the Response Phase, we develop a
heuristic by applying the same approach in RSP heuristic. Again the shortest paths
among all critical nodes are obtained by Dijkstra’s algorithm and anMIP is formulated
to minimize the weighted sum of visiting times. Hence the MIP model finds a visiting
order among the critical nodes, using the shortest paths and takes the priorities of the
nodes into consideration. The decision variables are as follows:
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ykl = 1 if l ∈ C is the first critical node visited after k ∈ C (possibly with

noncritical nodes in between) and 0 otherwise

akl = 1 if l ∈ C is visited after k ∈ C , and 0 otherwise

xkli j = 1 if (i, j) ∈ A is traversed while going from critical node k to critical node l

vkli j = 1 if (i, j) ∈ A is cleaned while going from k ∈ C to l ∈ C , and 0 otherwise

rk = time that node k ∈ C is reached

In this problem, the exact visiting times of critical nodes are required as explained
earlier. To find the time that the vehicle reaches critical node l, rl , we need to know the
visiting time of the previous node, rk , and all arcs that are used and cleaned between
the shortest path from k to l. Instead of variables xi j and Bi j that are used in RSP
heuristic, we define variables xkli j and vkli j to identify which arcs are cleaned on the
path pkl .

Constraint (57) ensures that if l is visited after k then the arcs in the shortest path
between k and l are used. (58) implies that if a critical node m is visited on the path
from k to l then m must be visited before k and l. (59) and (60) guarantee that arc
(i, j) can be cleaned while going from k to l if the arc (i, j) is blocked and it is in the
shortest path between k and l. By constraints (61) and (62) we make sure that the arc is
cleaned in its first usage; (61) ensures that the arc is not cleaned if it used before while
(62) forces that the arc to be cleaned in some path. (63) assigns the visiting times to
the critical nodes.

min
∑

k∈C\{s}
wkrk (56)

s.t.

(34–41)

ykl = xkli j ∀k, l ∈ C l �= s, ∀(i, j) ∈ Pkl (57)

aml ≥ xklim ∀k, l,m ∈ C l,m �= s, ∀i ∈ N (58)

vkli j = 0 ∀k, l ∈ C, ∀i, j ∈ N : Ii j = 0 (59)

vkli j ≤ xkli j + xklj i ∀k, l ∈ C, ∀i, j ∈ N : i < j (60)

2 − vkli j ≥ xmn
i j + xmn

ji + amk ∀k,m ∈ C, ∀l, n ∈ C\{s} : k �= l,m �= n

∀i, j ∈ N : Ii j = 0, i < j (61)

|C\{s}|
∑

k,l∈C
k �=l,l �=s

vkli j ≥
∑

k,l∈C
k �=l,l �=s

(xkli j +xklj i ) ∀i, j ∈N : Ii j =0, i< j (62)

rl ≥rk+timekl−(1 − ykl )M+
∑

i, j∈N ,i< j
Ii, j=0

ci j v
kl
i j ∀k ∈ C, l ∈ C\{s} (63)

xkli j , v
kl
i j ∈ (0, 1) ∀i, j ∈ N ,∀k, l ∈ C (64)

akl , ykl ∈ (0, 1) ∀k, l ∈ C (65)
rk ≥ 0 ∀k ∈ C (66)
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In the next section we present the data sets which are used in the analyses of the exact
and heuristic solution methodologies proposed for DRR and PDRR.

5 Computational study

5.1 Data sets

All solution methodologies are tested using different data sets based on two districts
of İstanbul, Turkey. The first district, Kartal, has 45 nodes, seven of which are critical.
The second district, Bakırköy, has 73 nodes including 15 critical nodes. Hereafter by
critical nodes we refer to the critical nodes excluding the supply node. In the data
sets, the critical nodes correspond to the neighborhoods which are close to schools
and hospitals. Detailed information about these data sets can be found in the studies
by Kılcı et al. (2015) and Sahin et al. (2015).

The maps in Figs. 3 and 4 show the locations of supply nodes and critical nodes in
Kartal and Bakırköy, respectively. In both, stars represent the supply node, triangles
correspond to schools and squares are the locations of the nodes near hospitals. The
node numbers for critical nodes and supply node are also given in Table 1.

For the computational analyses we use the instances that are generated by Sahin
et al. (2015). In their study, the travel times are obtained using the actual travel distance
between nodes and taking the vehicle’s speed as 20 km/h. The matrix is symmetric
and satisfies the triangle inequality.

To create different scenarios Sahin et al. (2015) consider four levels of earthquake
severity. With the higher the severity of earthquake (SOE), we have higher number
of blocked arcs. The blocked arc ratios (BAR) taken for each level of severity are
presented in Table 2.

For each severity level, using the BAR values five I matrices are generated ran-
domly. Thus, for each level of severity there are five instances with different sets of
blocked arcs. Since there are four levels of severity, there are 20 instances. Further-

Fig. 3 The locations of the supply node and the critical nodes in Kartal
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Fig. 4 The locations of the supply node and the critical nodes in Bakırköy

Table 1 Features of Kartal and Bakırköy graphs

Kartal Bakırköy

# of nodes 45 73

Supply node 16 7

Total # of critical nodes 7 15

# of schools (school nodes) 3 (14, 21, 22) 8 (5, 15, 34, 36, 47, 55, 65, 67)

# of hospitals (hospital nodes) 4 (26, 33, 41, 43) 7 (16, 17, 18, 19, 20, 21, 22)

Table 2 Severity of earthquake, corresponding BAR values

SOE BAR (%) BAR value for Kartal (%) BAR value for Bakırköy (%)

1 0–20 12.5 19

2 20–50 44.5 23

3 50–80 58 54

4 80–100 81.9 82

more, debris cleaning times on blocked arcs are calculated in two different ways, both
depending on the severity of the earthquake and the travel time of the arc. The lower
cleaning time is direct multiplication of the travel timewith the SOE value since severe
earthquakes cause higher amount of debris and the cleaning time is also dependent to
the travel distance/time of that arc. The higher cleaning time is defined to include some
randomness. ci j denotes the higher cleaning time and c′

i j denotes the lower. They are
calculated as follows:

ci j = SOE ∗ ti, j +U

[
0, max

(i, j)∈A
ti j

]

c′
i j = SOE ∗ ti, j
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Table 3 Severity of earthquake,
corresponding BAR values for
the second Kartal set

SOE BAR values for the second Kartal set (%)

1 40, 20, 0

2 50, 30, 10

3 70, 40, 20

4 80, 50, 30

Hence there are a total of 40 instances generated for Kartal data set; 20 with ci j
(K1. . .K20) and 20 with c′

i j (K1
′ . . .K20′). For example the locations of blocked arcs

are different inK1,K2,K3,K4,K5 but the same cleaning effort is used for all. The only
difference between K20 and K20′ is the cleaning times. These sets belonging to Kartal
district are generated and used by Sahin et al. (2015). For Bakırköy data set, again
40 instances are generated in the same manner, but they are used with three different
sets of critical nodes: only schools, only hospitals and both. Since Bakırköy is a larger
district compared to Kartal, in addition to the original critical set, the computations
are done by dividing the critical set into two.

ForKartal district, to consider some correlation among the blocked arcswe generate
another data set. For this set a hypothetical disaster center is chosen and the blocked
arc ratios are determined according to the closeness to this center. We take the center
as node 16 which is supply node and close to the center of the district. Again we use
four degrees of severity of earthquake (SOE) and for each of them three different BAR
values are used to determine the number of blocked arcs. The first BAR value is used
for the arcs whose adjacent nodes are in 7-min distance. The second is used for the
ones that are >7 and <15, and the last one is used for the rest. These BAR values are
given in Table 3. For each SOE, five different I matrices are generated and the lower
cleaning times are used for these instances (K21. . .K40).

For the second model, to determine the weights assigned to each critical node,
we use the population of neighborhoods to which each critical node belongs. The
population of the neighborhoods are obtained from Turkish Statistical Institute and
they are normalized so that each critical node has a weight value out of 100, and
the sum of all weights is equal to 100. The normalization is done only for the nodes
included in the set for the related instance. Thus while calculating the weights for
Bakırköy instances in which the critical nodes are only schools, the hospitals are not
considered.

In the following section we analyze the efficiency of the MIP models and heuristics
with these instances.

5.2 Analyses on DRR

The experiments on the mathematical model and the heuristic (RSP) proposed for
DDR are conducted using Java and CPLEX 12.6 on a 4XAMD Opteron Interlagos
16C 6282SE 2.6G 16M 6400MT computer. First we present the solutions obtained
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Table 4 DRR model test results with Kartal instances (higher cleaning times)

Instances
features

Instance # Optimal value CPU (s)
(Cplex)

# of cleaned
arcs

SOE = 1 |C\{s}| = 7 ci j K1 44 39.07 0

K2 43 50.25 0

K3 44 51.13 0

K4 43 43.04 0

K5 43 42.63 0

SOE = 2 |C\{s}| = 7 ci j K6 48 49.25 0

K7 50 56.34 0

K8 51 58.22 0

K9 49 68.92 0

K10 48 41.44 0

SOE = 3 |C\{s}| = 7 ci j K11 53 71.55 0

K12 63 162.14 0

K13 68 114.85 0

K14 46 57.72 0

K15 47 58.17 0

SOE = 4 |C\{s}| = 7 ci j K16 109 616.1 1

K17 82 372.72 0

K18 110 551.87 1

K19 90 348.14 1

K20 101 490.14 3

with Kartal instances by the MIP model and the heuristic and then the analyses on
Bakırköy instances follow.

5.2.1 Kartal instances

Parallel to our intuitions, as the severity of the earthquake increases, the CPU times
increase as well. This is due to the increase in the number of blocked arcs and con-
sequently the increase in the cleaning options. In other words, deciding which arcs to
clean becomes more crucial when their number rises. Since the higher level of severity
means higher cleaning times as well as more blocked arcs, the optimal values increase
parallel to the earthquake impact. As seen in Tables 4 and 5 which represent Kartal
results, when the severity of the earthquake is low, there is no cleaned arc in the optimal
solutions. This is expected since the number of blocked arcs are low when the severity
is low.

In the first five instances, either with higher and lower cleaning times, no arcs are
cleaned and the optimal paths have only slight differences. For example in the solution
of instance K2, depicted in Fig. 6, the vehicle goes from critical node 26 to critical
node 14 directly. In instance K1 since arc 26–14 is blocked, the vehicle uses node 15
as an intermediate node between 26 and 14, as seen in Fig. 5. This change in the path
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Table 5 DRR model test results with Kartal instances (lower cleaning times)

Instances
features

Instance # Optimal value CPU (s)
(Cplex)

# of cleaned
arcs

SOE = 1 |C\{s}| = 7 c′i j K1′ 44 48.37 0

K2′ 43 45.05 0

K3′ 44 43.73 0

K4′ 43 51.62 0

K5′ 43 51.45 0

SOE = 2 |C\{s}| = 7 c′i j K6′ 48 55.27 0

K7′ 49 67.33 1

K8′ 51 70.75 0

K9′ 49 79.59 0

K10′ 48 66.77 0

SOE = 3 |C\{s}| = 7 c′i j K11′ 51 91.29 1

K12′ 63 125.43 0

K13′ 67 145.93 1

K14′ 46 66.84 0

K15′ 47 62.44 0

SOE = 4 |C\{s}| = 7 c′i j K16′ 97 488.17 3

K17′ 78 119.8 1

K18′ 95 513.36 3

K19′ 81 120.31 2

K20′ 80 373.64 3

increases the total time only by one unit as it can be seen in the optimal values of
instances K1 and K2 in Table 4. Similar optimal paths are observed for instance K3,
K4 and K5 also. Hence, the optimal routes, route times and CPU times do not differ
much among the instances when the earthquake severity is low.

As the severity increases, the location of the blocked arcs result in larger differences
in the optimal solution values and CPU times. For example, instances K17 and K20
have the same number of blocked arcs, however while the K17’s path time is 82 with
no cleaning, K20’s path time is 101 with three cleaned arcs. The same comments are
valid when the cleaning times are lower. As seen Fig. 7, in instance K17 the vehicle
visits intermediate nodes and prefer not to do any cleaning whereas in the optimal
path for K20, the arcs 22–41, 22–21 and 33–43 are cleared from debris. These arcs
are indicated by dotted arrows in Fig. 8.

Comparing the solutions of instances with high and low cleaning times, we see that
with lower times, the cleaning starts sooner in terms of earthquake severity. Further-
more, the number of cleaned arcs are a bit higher when the cleaning times are low.
For example, instances K16 and K16′ have the same severity level, the same number
and the same location of blocked arcs, the only difference is the time required to clean
blocked arcs. This difference increases the number of blocked arcs from 1 to 3 between
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Fig. 5 Optimal route of K1

Fig. 6 Optimal route of K2

Fig. 7 Optimal route of K17
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Fig. 8 Optimal route of K20

Table 6 CPU times of models proposed for DRR (in seconds)

Instances DDR model by Sahin et al. (2015) DDR model by Berktaş et al.

Min Avg Max Min Avg Max

K1 ... K20 178.4 1441.73 9136.87 39.07 167.18 616.1

K1′ ... K20′ 152.9 1025.63 4864.74 43.73 134.36 513.36

K16 and K16′ while the total time drops from 109 to 97. The effect of cleaning time
can also be observed by comparing instances K18 and K18′. When the cleaning is
lower the optimal value decreases from 110 to 95 while the number of blocked arcs
increase from 1 to 3.

When CPU times are examined, it is observed that on the average the solution
times of the instances with lower cleaning times are less than the ones with higher
cleaning times. The difference ismore pronouncedwhen the severity of the earthquake
is higher. For example, the time needed to reach optimal solution for K18′ is less than
half of the time needed for K18.

Since Sahin et al. (2015) test their model with the same instances we are able to
compare the solution times of our model with theirs. The performances of the models
are summarized in Table 6. It can be seen that for all instances from Kartal, same
optimal solutions are reached eight times faster on the average by our model.

Next we present the results on the performance of the heuristic algorithm in terms
of the solution quality for Kartal instances. For the instances when the cleaning time
is higher, all instances are solved to optimality as seen in Table 7. With lower cleaning
times we obtain optimal solutions in 15 out of 20 instances and the highest gap is
4.08 %. All Kartal instances are solved in <2 s.

The results of the DRR model and the RSP heuristic are summarized in the Table 8
using the second data set generated for Kartal district. For these instances, similar
to the previous comments, we can say that as the severity of earthquake increases
the average CPU time for the DRR model increase as well. However, the relationship
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Table 7 Performance of RSP heuristic on Kartal instances with higher and lower cleaning times

Ins# Opt. value Heuristic Ins# Opt. value Heuristic

Value Gap % CPU (s) Value Gap % CPU (s)

K1 44 44 0.00 1.57 K1′ 44 44 0.00 1.5

K2 43 43 0.00 1.09 K2′ 43 43 0.00 1.28

K3 44 44 0.00 1.33 K3′ 44 44 0.00 1.12

K4 43 43 0.00 1.22 K4′ 43 43 0.00 1.18

K5 43 43 0.00 1.05 K5′ 43 43 0.00 1.17

K6 48 48 0.00 0.99 K6′ 48 48 0.00 1.21

K7 50 50 0.00 0.98 K7′ 49 49 0.00 1.07

K8 51 51 0.00 1.82 K8′ 51 51 0.00 1.25

K9 49 49 0.00 1.13 K9′ 49 51 4.08 1.94

K10 48 48 0.00 1.56 K10′ 48 48 0.00 1.17

K11 53 53 0.00 1.02 K11′ 51 51 0.00 0.68

K12 63 63 0.00 1.29 K12′ 63 63 0.00 1.23

K13 68 68 0.00 1.20 K13′ 67 68 1.49 1.02

K14 46 46 0.00 0.95 K14′ 46 46 0.00 1.06

K15 47 47 0.00 0.96 K15′ 47 47 0.00 0.94

K16 109 109 0.00 1.11 K16′ 97 98 1.03 1.43

K17 82 82 0.00 1.05 K17′ 78 78 0.00 1.21

K18 110 110 0.00 1.16 K18′ 95 97 2.10 0.92

K19 90 90 0.00 1.16 K19′ 81 82 1.23 1.04

K20 101 101 0.00 1.28 K20′ 80 80 0.00 1.01

between the SOE and the number of cleaned arcs in the previous results is not observed
here. As seen in Tables 4 and 5, cleaning is observed mostly when the SOE is 3 and
4. In this data set, the number of blocked arcs are higher when close to the center so
even if the SOE is low, higher number of blocked arc forces the model to clean some
arcs. As given in Table 8, the RSP heuristic solves all instances to optimality in <2 s.

Next section continues with the results obtained from the Bakırköy instances.

5.2.2 Bakırköy instances

The analyses on Bakırköy instances with DRR model lead to similar conclusions.
When the severity of the earthquake increases, and consequently the number of blocked
arcs and time required for debris removal increase, CPU times and optimal values rise.
As seen in Tables 9, 10, 11 and 12 the amount of increase in the optimal values and
CPU times vary according to the number of critical nodes and their locations. For
example when the severity rises from 1 to 4, the increase in the objective function is
higher for the instances where the critical node set consists of schools compared to
the instances where only hospitals are critical.
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Table 9 DRR model test results with Bakırköy instances (hospitals–higher cleaning times)

Instances
features

Instance # Optimal value CPU (s)
(Cplex)

# of cleaned
arcs

SOE = 1
|C\{s}| = 7
(hospitals) ci j

B1 41 242.55 0

B2 38 215.5 0

B3 39 235.79 0

B4 40 293.67 0

B5 40 338.96 0

SOE = 2
|C\{s}| = 7
(hospitals) ci j

B6 39 207.74 0

B7 39 165.41 0

B8 40 197.05 0

B9 42 294.85 0

B10 38 173.02 0

SOE = 3
|C\{s}| = 7
(hospitals) ci j

B11 39 136.22 0

B12 42 190.2 0

B13 46 206.05 0

B14 48 203.78 0

B15 43 172.18 0

SOE = 4
|C\{s}| = 7
(hospitals) ci j

B16 61 1197.11 0

B17 58 1437.28 0

B18 51 211.69 0

B19 59 329.28 0

B20 52 208.13 0

When we compare the instances concerned with the schools and hospitals, we see
that the schools instances result in higher CPU times. For example, with instance B1
the optimal is reached in 454.17 s for schools and in 242.55 s for hospital as seen in
Tables 9 and 11. This difference in the CPU times increases when SOE becomes 4 as
in the instance B16–B20. The average CPU for these instances where SOE equals to
4 is 4058 s for schools and 677 s for hospitals. Therefore the location of the critical
nodes has a significant effect on the CPU times.

Although lower cleaning time result in lower CPU times for Kartal instances, this
observation cannot be generalized for the Bakırköy instances. For example, from
Tables 11 and 12 we see that when the critical set only includes schools, CPU times
of B9 and B10 are lower than B9′ and B10′, however B6, B7 and B8 are greater than
B6′, B7′ and B8′, respectively. Furthermore not just the number of critical nodes but
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Table 10 DRR model test results with Bakırköy instances (hospitals–lower cleaning times)

Instances
features

Instance # Optimal value CPU (s)
(Cplex)

# of cleaned
arcs

SOE = 1
|C\{s}| = 7
(hospitals) c′i j

B1′ 41 297.92 0

B2′ 38 214.37 0

B3′ 39 245.09 0

B4′ 40 238.23 0

B5′ 40 224.49 0

SOE = 2
|C\{s}| = 7
(hospitals) c′i j

B6′ 39 189.75 0

B7′ 39 180.87 0

B8′ 40 349.11 0

B9′ 42 239.42 0

B′10 38 218.22 0

SOE = 3
|C\{s}| = 7
(hospitals) c′i j

B11′ 39 227.11 0

B12′ 42 203.41 0

B13′ 46 239.16 0

B14′ 48 291.72 0

B15′ 43 252.80 0

SOE = 4
|C\{s}| = 7
(hospitals) c′i j

B16′ 59 444.2 0

B17′ 57 497.27 0

B18′ 51 375.97 0

B19′ 55 1189.86 1

B20′ 52 393.92 0

the size and features of the network have an effect on CPU times. When we look at the
instance of Kartal and Bakırköy with seven critical nodes, namely instances K1–K5
andB1–B5 for hospitals, we see that the average CPU time of these Bakırköy instances
is four times those of Kartal.

The heuristic, RSP, which is developed for DRR problem solves all Bakırköy
instances to optimality when the critical node set consists of only hospitals. The
average solution time is around 1.35 s. When the critical node set is only schools,
RSP finds the optimal solution for all instances with higher cleaning time. When the
cleaning times are lower, 16 instances out of 20 are solved to optimality; the gaps for
instances B11′, B12′, B16′, B18′ are 5.97, 1.35, 4.6 and 1.92 %, respectively.

When hospitals and schools are both taken as critical, the number of critical nodes
becomes 15 and reaching optimal solutions in a reasonable amount of time becomes
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Table 11 DRR model test results with Bakırköy instances (schools–higher cleaning times)

Instances
features

Instance # Optimal value CPU (s)
(Cplex)

# of cleaned
arcs

SOE = 1
|C\{s}| = 8
(schools) ci j

B1 52 454.17 0

B2 61 766.38 1

B3 52 463.86 0

B4 54 528.97 0

B5 52 480.68 0

SOE = 2
|C\{s}| = 8
(schools) ci j

B6 52 1389.95 0

B7 60 2549.11 0

B8 52 1050.84 0

B9 60 1877.6 0

B10 52 425.77 0

SOE = 3
|C\{s}| = 8
(schools) ci j

B11 71 1439.26 0

B12 80 2770.89 0

B13 74 1038.03 0

B14 71 731.99 0

B15 77 2460.8 0

SOE = 4
|C\{s}| = 8
(schools) ci j

B16 96 5271.01 0

B17 78 1971.88 0

B18 112 6974.84 0

B19 84 2974.57 0

B20 87 3098.48 0

extremely difficult. Nevertheless, to compare the performance of the DRR model and
the RSP heuristic, we obtain the solutions by setting time limits to 2 h for the MIP
model and for the heuristic we look at the solutions found in 5 min and 2 h. As
seen in Tables 13 and 14 the heuristic outperforms the MIP model but we are not
able to comment on the quality of the solutions since the optimal solutions are not
available. The gaps show the percentage improvement over the DRR solution by the
RSP heuristic. In Table 14 we have one negative gap which means the model finds
better solution than the heuristic. When we compare the solutions reported by RSP
heuristic within 5 min and 2 h, we see that few improved solutions are found after
5min. Therefore, we suggest running the heuristic for 5min to reach a feasible solution
faster.
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Table 12 DRR model test results with Bakırköy instances (schools–lower cleaning times)

Instances
features

Instance # Optimal value CPU (s)
(Cplex)

# of cleaned
arcs

SOE = 1
|C\{s}| = 8
(schools) c′i j

B1′ 52 775.45 0

B2′ 58 517.7 1

B3′ 52 563.33 0

B4′ 54 357.18 0

B5′ 52 883.73 0

SOE = 2
|C\{s}| = 8
(schools) c′i j

B6′ 52 501.47 0

B7′ 56 2432.34 1

B8′ 52 437.61 0

B9′ 56 2175.61 1

B′10 52 1502.76 0

SOE = 3
|C\{s}| = 8
(schools) c′i j

B11′ 67 3112.28 1

B12′ 74 3456.95 2

B13′ 73 2717.89 1

B14′ 69 1747.06 1

B15′ 75 1128.25 1

SOE = 4
|C\{s}| = 8
(schools) c′i j

B16′ 87 5118.85 3

B17′ 78 2633.39 –

B18′ 104 6676.95 4

B19′ 79 3649.5 1

B20′ 83 2826.31 2

5.3 Analyses on PDRR

For the second model the same data sets and instances are used by assigning appro-
priate weights to the critical nodes as explained in Sect. 5.1. Our preliminary analyses
show that for the second model Gurobi 5 gives better CPU times than Cplex 12.6.
Both solvers are tested under different MIP emphasis settings and the best results are
obtained in the default setting for both solvers. The instance K1–K20 are solved for
2 h using both solvers. Out of 20 instances, Cplex 12.6 finds 18 optimal solutions in
2 h while Gurobi 5 reaches all optimal solutions with an average CPU time of 683 s.
Therefore Gurobi 5 is used for the test of the second model using Java on the same
computer.
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Table 13 Solutions of Bakırköy Instances by DRR model and RSP heuristic (all critical nodes, higher
cleaning times)

Ins # Best obj by DRR
model

Best obj by RSP
heuristic (5 min)

Gapa (5 min) Best obj by RSP
heuristic (2 h)

Gapa (2 h)

B1 96 73 23.96 73 23.96

B2 84 80 4.76 80 4.76

B3 77 72 6.49 72 6.49

B4 79 71 10.13 71 10.13

B5 78 72 7.69 71 8.97

B6 81 80 1.23 72 11.11

B7 87 80 8.05 80 8.05

B8 78 73 6.41 72 7.69

B9 81 78 3.70 78 3.70

B10 79 70 11.39 70 11.39

B11 110 93 15.45 93 15.45

B12 109 103 5.50 103 5.50

B13 101 94 6.93 94 6.93

B14 99 95 4.04 95 4.04

B15 101 97 3.96 97 3.76

B16 136 123 9.56 123 9.56

B17 146 120 17.81 120 17.81

B18 154 143 7.14 143 7.14

B19 120 112 6.67 112 6.67

B20 128 113 11.72 113 11.72

Gap = (DRR solution–RSP solution)/DRR solution × 100
a Gap indicates the improvement over DRR model solution

5.3.1 Kartal instances

The test results of the PDRRmodel on Kartal instances with higher and lower cleaning
efforts are presented in Tables 15 and 16 respectively. From these tables we make
similar deductions as in those for the previous problem. We see that debris removal
occurs when the severity of the earthquake is higher. When the cleaning effort is high,
blocked arcs are cleaned only when SOE equals to 4. When the cleaning effort is
low, more blocked arcs are cleaned. For example in the solution of instance K19 only
one arc is cleaned where three arcs are cleaned in K19′. Furthermore, similar to the
previous results, when SOE increases, the CPU times and optimal values increase as
well as seen in the test of the second model on Kartal instances.

When we compare the CPU times of both mathematical models using Kartal
instances, Tables 4 and 15, we observe that solution times of PDRR model is much
higher than those of DRR model. This is expected since we increase the number of
variables and constraints to be able to find the exact visiting times of the critical
nodes. In DRR model we only keep track whether the blocked arcs are cleaned or not.
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Table 14 Solutions of Bakırköy instances by DRR model and RSP heuristic (all critical nodes, lower
cleaning times)

Ins # Best obj by DRR
model

Best obj by RSP
heuristic (5 min)

Gapa (5 min) Best obj by RSP
heuristic (2 h)

Gapa (2 h)

B1′ 76 72 5.26 72 5.26

B2′ 78 78 0.00 74 5.13

B3′ 74 72 2.70 72 2.70

B4′ 73 71 2.74 71 2.74

B5′ 74 71 4.05 71 4.05

B6′ 82 72 12.20 72 12.20

B7′ 79 77 2.53 76 3.78

B8′ 90 72 20.00 72 20.00

B9′ 109 74 32.11 74 32.11

B10′ 80 70 12.50 70 12.50

B11′ 97 92 5.15 91 6.59

B12′ 97 97 0.00 97 0.00

B13′ 96 94 2.08 94 2.08

B14′ 104 93 10.58 93 10.58

B15′ 95 95 0.00 95 0.00

B16′ 115 119 −3.48 119 −3.48

B17′ 122 114 6.56 111 9.02

B18′ 145 139 4.14 139 4.14

B19′ 114 111 2.63 109 4.39

B20′ 114 110 3.51 110 3.51

Gap = (DRR solution − RSP solution)/DRR solution × 100
a Gap indicates the improvement over DRR model solution

In PDRR model, we are required to know when the arc is cleaned; going from which
critical node to which critical node so that the cleaning time is added to the visiting
time of the latter. The total route times of the optimal solutions found by both models
are presented in Table 17. From this table we see that for each level of SOE some
values are the same with the first model and some are higher. This implies that the
change in the route and the total route time in the weighted case, significantly depends
on the locations of the blocked arcs together with the weights. For example, the only
difference in instance K11 and K13 are the location of the blocked arcs but for the
first one both of the models reach optimal solutions with total route time equal to 53
while for instance K13, the total route times are 68 and 72 for the first and the second
problem, respectively.

When we look at the instances K1 and K3, from Table 17 we see that the total route
times are different; 44 and 47 respectively. However, from Table 15 it can be seen
that the optimal values for the weighted case for these instances are the same which is
2035. This shows that same objective value for the second model does not necessarily
imply that the optimal solutions have the same route and/or total route time.
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Table 16 PDDR model test results with Kartal instances (lower cleaning times)

Instances
features

Instance # Optimal value CPU time
(Gurobi)

# of cleaned
arcs

SOE = 1 |C\{s}| = 7 c′i j K1′ 2035 95.83 0

K2′ 1949 124.7 0

K3′ 2035 102.15 0

K4′ 1949 99.36 0

K5′ 1949 137.65 0

SOE = 2 |C\{s}| = 7 c′i j K6′ 2123 387.9 0

K7′ 2135 426.63 0

K8′ 2258 431.03 0

K9′ 2197 358.51 0

K10′ 2123 422.57 0

SOE = 3 |C\{s}| = 7 c′i j K11′ 2564 722.86 1

K12′ 2860 806.2 1

K13′ 3225 624.41 1

K14′ 2169 605.93 0

K15′ 2128 513.3 0

SOE = 4 |C\{s}| = 7 c′i j K16′ 4775 1741.48 2

K17′ 4320 1495.75 2

K18′ 4759 1956.3 3

K19′ 4321 1717.03 1

K20′ 3502 1615.06 2

Table 17 Total route times of optimal solutions obtained from the MIPs using Kartal instances with higher
cleaning times

Ins# Optimal route
time by DRR

Optimal route
time by PDRR

Ins# Optimal route
time by DRR

Optimal route
time by PDRR

K1 44 44 K11 53 53

K2 43 44 K12 63 75

K3 44 47 K13 68 82

K4 43 44 K14 46 46

K5 43 44 K15 47 52

K6 48 48 K16 109 117

K7 50 63 K17 82 85

K8 51 52 K18 110 110

K9 49 49 K19 90 93

K10 48 48 K20 101 115
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Fig. 9 Optimal route of instance K7 for DRR

Fig. 10 Optimal route of instance K7 for PDRR

Out of 20 instances of Kartal with high cleaning effort, optimal routes found by the
first and second model are the same for seven of them. Instance K7 is one of themwith
different optimal routes and its solutions are presented in Figs. 9 and 10. Node 14 is
relatively far from other critical nodes and from the supply node, and it is usually the
last visited node for Kartal instance. However in the weighted version of the problem,
node 14 is visited in the fifth order instead of seventh for instance K7. Hence, the
weights, together with the other features of the network, can change the optimal route.

We test our second heuristic, Prioritized Routing with Shortest Paths, with Kartal
data set. PRSP solves all instances except one to optimality in around 5 s. The only
nonoptimal solution, instance K20′, has a gap of 3.94 % as seen in Table 18.
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Table 18 Performance of PRSP
heuristic on Kartal instances
with higher and lower cleaning
times

Ins# Gap % CPU (s) Ins# Gap % CPU (s)

K1 0.00 5.23 K1′ 0.00 5.17

K2 0.00 4.86 K2′ 0.00 5.04

K3 0.00 5.08 K3′ 0.00 5.19

K4 0.00 5.23 K4′ 0.00 5.19

K5 0.00 5.03 K5′ 0.00 5.09

K6 0.00 5.17 K6′ 0.00 4.87

K7 0.00 4.86 K7′ 0.00 4.95

K8 0.00 4.65 K8′ 0.00 4.55

K9 0.00 4.52 K9′ 0.00 4.58

K10 0.00 4.77 K10′ 0.00 4.79

K11 0.00 4.82 K11′ 0.00 4.83

K12 0.00 4.74 K12′ 0.00 4.77

K13 0.00 4.64 K13′ 0.00 5.08

K14 0.00 4.38 K14′ 0.00 4.45

K15 0.00 4.64 K15′ 0.00 4.50

K16 0.00 5.08 K16′ 0.00 4.84

K17 0.00 5.04 K17′ 0.00 5.15

K18 0.00 4.93 K18′ 0.00 4.59

K19 0.00 4.84 K19′ 0.00 4.50

K20 0.00 4.71 K20′ 3.94 4.50

5.3.2 Bakırköy instances

The CPU time difference between DRR and PDRR model, which we already observe
on Kartal set, is also seen with Bakırköy instances. Especially when the earthquake
severity levels are high, it gets harder to reach optimality in a reasonable amount of
time.

As seen in Table 19, optimal solutions are found for 9 out of 20 instances when the
cleaning effort is high and from Table 20 we see that half of instances are solved to
optimality when the cleaning effort is low. As stated in the analyses of the first model,
the locations of schools have a tremendous effect on the solutions times.

When the critical set consist of hospitals, we reach the optimal solutions 2 h as
seen in Tables 21 and 22. To evaluate the effect of the weights to the optimal route, we
compare the total route times obtained by the DRR and PDRR models on Bakırköy
instances where critical nodes are only hospitals and the cleaning effort is high.We see
that 5 out of 20 instances have the same total route time for DRR and PDRR models.

With critical node set of hospitals, we have the optimal solutions of Bakırköy
instance thus we are able to evaluate the solutions obtained by PRSP heuristic. The
instances are solved in 12 s on the average and all optimal solutions are found except
for instance B17′ whose gap is 0.6 %.When schools are taken as the critical nodes, 19
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Table 21 PDDR model test results with Bakırköy instances (hospitals, higher cleaning times)

Instance features Instance # Optimal value CPU time Gurobi # of cleaned arcs

SOE = 1
|C\{s}| = 7
(hospitals) ci j

B1 1979 338 0

B2 1876 355.64 0

B3 1884 531.34 0

B4 1862 534.37 0

B5 1920 318.56 0

SOE = 2
|C\{s}| = 7
(hospitals) ci j

B6 1884 403.22 0

B7 1907 541.26 0

B8 1924 642.64 0

B9 1897 722.25 0

B10 1876 704.38 0

SOE = 3
|C\{s}| = 7
(hospitals) ci j

B11 1875 2241.83 0

B12 1884 1663.46 0

B13 2169 1925.84 0

B14 2362 2419.83 0

B15 1970 2080.29 0

SOE = 4
|C\{s}| = 7
(hospitals) ci j

B16 2430 4135.24 0

B17 2671 4890.86 0

B18 2361 4833.86 0

B19 2672 6275.62 0

B20 2483 4944.91 0

instances are solved to optimality by the PDRR model. PRSP heuristic solves 18 of
them to optimality and the gap for instance B12′ is 0.12 %. For the rest, 21 instances,
that cannot be solved to optimality due to the time limit, the PRSP heuristic finds the
same or better solutions compared to the PDRRmodel, in 18.3 s on the average. These
results are summarized in Table 23. Positive gap indicates that the PRSP heuristic
performs better.

6 Conclusion

In this study, we proposed solution methodologies for Prioritized Debris Removal
Problem in the Response Phase. TheMIP formulation suggested for the DRR problem
is proved to be more efficient than the one developed by Sahin et al. (2015) by the
comparison of Kartal solutions. The computational studies with a larger network has
shown that the number and locations of the critical nodes have tremendous effect on
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Table 22 PDDR model test results with Bakırköy instances (hospitals, lower cleaning times)

Instance features Instance # Optimal value CPU time Gurobi # of cleaned arcs

SOE = 1
|C\{s}| = 7
(hospitals) c′i j

B1′ 1979 316.54 0

B2′ 1876 294.52 0

B3′ 1884 335.47 0

B4′ 1862 255.17 0

B5′ 1920 287.19 0

SOE = 2
|C\{s}| = 7
(hospitals) c′i j

B6′ 1884 348.97 0

B7′ 1907 444.67 0

B8′ 1924 410.58 0

B9′ 1897 438.99 0

B10′ 1876 371.99 0

SOE = 3
|C\{s}| = 7
(hospitals) c′i j

B11′ 1875 1394.25 0

B12′ 1884 1330.03 0

B13′ 2169 1254.56 0

B14′ 2362 1145.38 0

B15′ 1970 1210.83 0

SOE = 4
|C\{s}| = 7
(hospitals) c′i j

B16′ 2426 4963.48 1

B17′ 2655 4981.34 1

B18′ 2361 4518.54 0

B19′ 2570 5621.99 1

B20′ 2483 6060.65 0

the solution times. To obtain near optimal solutions in a timely manner we suggested
an efficient heuristic which basically solves a modified TSP among the critical nodes.

Our main contribution to the literature is the second problem and its corresponding
model. To the best of the authors’ knowledge, there is no study considering node
priorities in this problem. The MIP model formulated for this problem resulted in
higher CPU times due the necessity of knowing exact times of the debris removal
and arrivals to the critical nodes. To obtain solutions of good quality we developed an
efficient heuristic.

In this study, we focus on earthquakes and consider the routing problem for small
provinces where each municipality has only one vehicle which can clean the blocked
arcs. For other types of disasters that impact a larger area, the single vehicle assump-
tion would not be valid, therefore routing with heterogeneous fleet can be a realistic
extension.Moreover, the critical points which constitute a subset of nodes in our study,
can be taken as a subset of edges and nodes.
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