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a b s t r a c t

We study the problem of permuting each column of a given matrix to achieve
minimum maximal row sum or maximum minimal row sum, a problem of interest in
probability theory and quantitative finance where quantiles of a random variable
expressed as the sum of several random variables with unknown dependence
structure are estimated. If the minimum maximal row sum is equal to the maximum
minimal row sum the matrix has been termed jointly mixable (see e.g. Haus (2015),
Wang and Wang (2015), Wang et al. (2013)). We show that the lack of joint
mixability (the joint mixability gap) is not significant, i.e., the gap between the
minimum maximal row sum and the maximum minimal row sum is either zero
or one for a class of integer matrices including binary and complete consecutive
integers matrices. For integer matrices where all entries are drawn from a given set
of discrete values, we show that the gap can be as large as the difference between the
maximal and minimal elements of the discrete set. The aforementioned result also
leads to a polynomial-time approximation algorithm for matrices with restricted
domain. Computing the gap for a {0, 1, 2}-matrix is proved to be equivalent to
finding column permutations minimizing the difference between the maximum and
minimum row sums. A polynomial procedure for computing the optimum difference
by solving the maximum flow problem on an appropriate graph is given.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and background

We consider the problem of permuting each column of a given matrix to achieve minimum maximal
row sum or maximum minimal row sum, a problem of recent interest in quantitative finance (see e.g.,
[1–3]) where quantiles of a random variable expressed as the sum of several random variables with unknown
dependence structure are estimated. If the minimum maximal row sum is equal to the maximum minimal row
sum the matrix is termed jointly mixable, a notion first introduced in [4] for general families of probability
distributions. In this paper inspired by the recent work of Haus [2], we develop the study of joint mixability
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of some classes of integer matrices in a novel direction: we focus on the lack of mixability. After a brief
introduction, we start in Section 2 with a result concerning binary matrices where we establish that the lack
of joint mixability is not significant, i.e., the gap between the minimum maximal row sum and the maximum
minimum row sum is either zero or one. Since a necessary and sufficient condition for joint mixability
of binary matrices is known, one can immediately conclude that the gap is equal to one if the condition
fails. Besides, optimal permutations achieving the gap can be obtained in linear time. A similar conclusion
holds for complete consecutive integer matrices, a class of integer matrices defined in [2], as we establish in
Section 3. In a generalization to integer matrices where all entries are drawn from a given set of discrete
values, we show in Section 4 that the gap between the optimized minimum and maximum row sums can be
as large as the difference between the minimal and maximal elements of the discrete set. This observation
leads to a polynomial time approximation algorithm. For matrices with values from the set {0, 1, 2} (termed
two-ary matrices) we prove in Section 5 that computing the gap is equivalent to finding column permutations
minimizing the difference between the maximum and minimum row sums. We also describe a polynomial-time
procedure to compute the difference between the minimum maximal row sum and the maximum minimal
row sum using so-called swap operations that can be implemented within a maximum-flow algorithm for an
appropriately defined capacitated network for a given problem instance. Finally, in Section 6 we hint at the
challenging nature of the problem by showing that the linear programming bound is trivial.

It is hoped that the present paper will spark renewed interest in the discrete mathematics community
for this fascinating problem of considerable importance in statistics and quantitative finance. An attractive
feature of the present paper is the elementary nature of proofs which rely on simple combinatorial arguments
and involve at most some linear programming.

There is already considerable research activity on the continuous space counterpart of the problems of
this paper, see e.g., the recent papers [5–7,4]. The standard reference on joint mixability in probability
theory is [7]. In an atomless probability space, where random variables Xi which are distributed according
to given univariate distributions Fi, i = 1, . . . , d are given, one asks the question to determine whether a
given distribution F is a possible distribution for the sum S = X1 + · · ·+Xd. While the problem has a long
history (see e.g., the introduction of [7]) Wang and Wang [7] partially answer the above question recently
using the theory of joint mixability. In their context a vector (X1, . . . , Xd) is a joint mix if X1 + · · ·+Xd is
almost surely a constant. A d-tuple of distributions (F1, . . . , Fd) is said to be jointly mixable if there exists a
joint mix with univariate marginal distributions F1, . . . , Fd. Ref. [7] reformulates the original question above
in terms of the equivalent question of determining joint mixability of an n-tuple of distributions.

In the present paper we are concerned with the problem of determining joint mixability of matrices, which
is described as the following pair of optimization problems: given a matrix A ∈ Rm×d, (a) find independently
a permutation for each column of A such that the maximal row sum of the resulting matrix is minimized
and (b) find independently a permutation for each column of A such that the minimal row sum of the
resulting matrix is maximized. Let the permutations of the d columns of A be denoted as a permutation
system Π = (π1, . . . , πd), and refer to as AΠ the permuted matrix obtained by permuting column k by
permutation matrix πk, for k = 1, . . . , d. Hence the optimization problems we are interested in are:

γ(A) = min
Π

max
i=1,...,m


d
j=1
AΠ
ij


, (1)

and

β(A) = max
Π

min
i=1,...,m


d
j=1
AΠ
ij


. (2)

When γ(A) = β(A), the matrix A is said to be jointly mixable, and the resulting permuted matrix is termed
a joint mix. Naturally, the matrix problems treated in the present paper are discrete space analogs of the
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probabilistic problems studied in the recent Refs. [5–7,4]. We point out these analogies after the relevant
result throughout the paper.

Besides being a discrete space counterpart of the continuous space problems briefly described above,
the problem of determining joint mixability of matrices is also closely related to the statistical problem
of estimating quantiles of random variables obtained by aggregation of several random variables with an
unknown dependence structure. More precisely, consider the following problem: let S be an aggregate random
variable described as S =

d
i=1Xi where the random variables Xi are distributed according Fi. One does

not know the dependence among random variables Li nor the joint distribution function FS of S. One is
typically interested in computing the so-called Value-at-Risk (VaR) F−1

S (α) = inf{x ∈ R|FS(x) ≥ α} for
α ∈ (0, 1). Assuming the marginal distributions to be discrete (or discretized according to the procedure
described e.g., in [8]), one computes the values qir = F−1

i (r/N) for r = 1, . . . , N . Dependence among the
constituent random variables Xi is reflected in the matrix A whose ith column is the vector (qi0, qi1, . . . , qiN )T :

A =

 q
1
0 · · · qd0
...

...
q1N · · · qdN

 .
In order to find the tightest bounds on F−1

S one needs to solve the problem of minimizing the variance of
the row sums of A or, equivalently, [9] minimize the difference γ(A)−β(A) over all arrangements of the Fi’s.

The interested reader is directed to Refs. [2,8] for further details and to [5,1,6,3,4,14] for applications
in insurance and finance. A recent paper [10] surveys the main results and open questions on joint
mixability (and the related concept of complete mixability). The site https://sites.google.com/site/
rearrangementalgorithm/home contains pointers to the literature and applications of the problem as well
as implementations of algorithms related to the problem. The web site title is in reference to the so-called
rearrangement algorithm (see [8]) that can compute bounds on γ(A) and β(A) quite fast. On the other
hand, Haus [2] shows that the rearrangement algorithm may terminate with a large error proportional to
the largest entry in the matrix; cf. Lemma 4 of [2].

The problem has been studied earlier under the title of assembly line crew scheduling in [11]. In this
application, the rows of the matrix A correspond to assembly lines and the columns correspond to operations;
the numbers in the jth column indicate the times required by the individual members of the crew performing
the jth operation. The objective is to assign the members in each crew so as to minimize the maximum
time required to produce an item over the m assembly lines. It was shown in [11] that the classical
makespan scheduling problem is a special case of this NP-complete problem. In a related study Coffman and
Yannakakis [12] suggested three approximation algorithms to compute a permutation system that minimizes
the maximum row sum:

1. “Algorithm D”: Order the first two columns in opposite way. Then order the third oppositely to the
sum of the first two, and repeat until the last column is processed. This is very similar to Rüschendorf’s
“rearrangement algorithm” [9], with the difference that in “D” each column is processed only once. In [11]
algorithm D was shown to have an approximation bound equal to 2−1/m. We utilize a similar procedure
in the proof of Theorem 4.

2. “Algorithm L”: This is a greedy algorithm of the “mark and move” type. The elements in the whole
matrix are marked in decreasing order. When an element is marked, it is exchanged in its column with
an unmarked one, and goes to the row which has the minimal sum of marked elements.

3. “Algorithm RS”: This algorithm is more complicated than the previous two in that there is a pre-
processing phase in which the biggest m elements of the matrix are assigned one for each row, to prevent
the sums of two big values. Then the row sums are examined sequentially and improved by a certain fixed
pattern of swaps.

https://sites.google.com/site/rearrangementalgorithm/home
https://sites.google.com/site/rearrangementalgorithm/home
https://sites.google.com/site/rearrangementalgorithm/home
https://sites.google.com/site/rearrangementalgorithm/home
https://sites.google.com/site/rearrangementalgorithm/home
https://sites.google.com/site/rearrangementalgorithm/home
https://sites.google.com/site/rearrangementalgorithm/home
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They were able to prove that “RS” is better then “L” and “D” in the sense that asymptotically in the worst
case its optimal value is 3/2 the true minimal max row sum.

For A ∈ Zm×3 Haus [2] gives a polynomial 2-approximation algorithm for computing γ(A).

1.1. Notation and elementary observations

We refer to the difference G(A) = γ(A)− β(A) for a given matrix A as the joint mixability gap of A. Let
si =
d
j=1Aij for i ∈ {1, . . . ,m} be the ith row sum and sΠi be the corresponding sum under permutation

Π . Let s =
m
i=1 si and r = s/m.

Observation 1. For any integer matrix A, γ(A) ≥ ⌈ sm⌉ and β(A) ≤ ⌊ sm⌋. In other words, if m - s, then
G(A) ≥ 1.

For A ∈ Rm×d, consider a permutation such that the maximum difference between the row sums is
minimized. Let K(A) reflect this difference. More formally,

K(A) = min
Π

max
i,j=1,...,m


d
k=1
AΠ
ik −

d
k=1
AΠ
jk


. (3)

Let Π γ denote a permutation with the largest row sum equal to γ(A), Π β a permutation with the smallest
row sum equal to β(A) and ΠK the permutation with the largest row sum difference equal to K(A).

Without loss of generality we may assume that sΠγ1 ≥ sΠγ2 ≥ · · · ≥ sΠγm , sΠβ1 ≥ sΠβ2 ≥ · · · ≥ sΠβm and
sΠ

K

1 ≥ sΠK2 ≥ · · · ≥ sΠKm .
The following results provide relationships between the numbers G and K.

Lemma 1. For any A ∈ Rm×d, G(A) ≤ K(A).

Proof. Since sΠK1 ≥ sΠK2 ≥ · · · ≥ sΠKm , γ(A) ≤ sΠK1 and β(A) ≥ sΠKm and thus G(A) ≤ K(A). �

Lemma 2. For any A ∈ Rm×d, G(A) = 0 if and only if K(A) = 0.

Proof. Assume G(A) = 0. In other words, sΠγ1 = sΠβm . Since
m
k=1 s

Πγ

k =
m
k=1 s

Πβ

k , we must have
sΠ

γ

i = sΠγj and sΠβi = sΠβj for all i ̸= j and thus K(A) = 0. The other direction is a simple corollary
of Lemma 1. �

2. Binary matrices

Recently, Haus [2] proved the following theorem for binary matrices A ∈ Bm×d, where B = {0, 1}.

Theorem 1 (Haus [2]). A ∈ Bm×d is jointly mixable if and only if m | s. The permutation achieving the
joint mix can be computed in linear time O(m · d).

Our first result is the following.

Theorem 2. If A ∈ Bm×d is not jointly mixable, then γ(A) = ⌈ sm⌉, β(A) = ⌊ sm⌋, i.e., G(A) = 1. Furthermore,
the optimal permutation achieving the gap can be computed in linear time O(m · d).
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Proof. We borrow from the proof of Theorem 1 of [2]. We first deal with the problem (1). Let r̄ = ⌈ sm⌉.
Define the defect δ(i) of row i as δ(i) = r̄ −

d
j=1Aij . Let the total absolute defect be φ =

m
i=1 |δ(i)|.

Now, consider the following procedure: starting from column j = 1, define Sj = {i ∈ {1, . . . ,m}|δ(i) <
0, Aij = 1}, and Dj = {i ∈ {1, . . . ,m}|δ(i) > 0, Aij = 0}. If both Sj and Dj are non-empty, let
tj = min{|Sj |, |Dj |}, and swap the first tj entries indexed by Sj and Dj in column j (i.e., if tj = 1,
swap the entry in column j indexed by the first element in Sj with the entry in column j indexed by the
first entry in Dj ; if tj = 2, then do the previous step with the first respective entries in Sj and Dj , and
then for the second respective entries in Sj and Dj , and so on). After the swapping is performed, update
the defects δ for the rows involved in the swap. Repeat this step for all j = 2, 3, . . . , d.

Clearly, after each swap the defect of rows with positive defect will decrease and the defect of rows with
negative defect will increase. Therefore, after each column where at least one swap is performed, the total
absolute defect φ decreases. Assume that the procedure stops at the last column and there is a row i2 with
a positive defect δ(i2) and a row with a negative defect δ(i1). Since si2 < si1 there must be a column index
l such that Ai2,l = 0 and Ai1,l = 1 since otherwise the rows i1 and i2 would have to be identical and would
not have defects of opposite sign. Hence, the row i1 should be in Sl and the row i2 should be in Dl, and
should have been involved in a swap, a contradiction. Therefore, when the procedure terminates, one can
only have all non-negative or all non-positive defects. Since sm < ⌈

s
m⌉ <

s
m + 1, at least one of these defects

should be equal to zero.

The proof for the problem (2) is verbatim repetition of the previous arguments with defects defined using
⌊ sm⌋. �

Combining Theorems 1 and 2, we know that for a given binary matrix joint mixability and the joint
mixability gap are decided following the result of a division. Besides, optimal permutations are found in
linear time.

Corollary 1. For a binary matrix A ∈ Bm×d, G(A) = 1m-s.

Below in Section 4, we shall obtain the above corollary as a consequence of a more general result.

3. Complete consecutive integers matrices

Let A ∈ Zm×d>0 be an m× d complete consecutive integers matrix [2]. These matrices are characterized by
the property that each column is a permutation of the first m natural numbers, that is {1, . . . ,m}. Haus [2]
showed how to compute explicitly γ(A) and β(A) for some instances of such matrices.

We shall show that any complete consecutive integers matrix (for d ≥ 2) is either jointly mixable or has
G(A) = 1. We first need the following observations.

Observation 2. If A is a complete consecutive integers matrix and d = 1 then γ(A) = m and β(A) = 1.

Lemma 3. If A is a complete consecutive integers matrix and d is even, then A is jointly mixable.

Proof. It is easy to provide such a permutation. For every two consecutive columns i and i+ 1 such that i is
odd, permute the rows in column i in increasing order, and those in column i+ 1 in decreasing order. Then,
under this permutation Π , sΠk = d

2 (m+ 1) for every k ∈ {1, . . . ,m}. �

Lemma 4. Let A be an m× 3 complete consecutive integers matrix. Then, A is jointly mixable if and only if
m is odd. Moreover, if m is even, then G(A) = 1.
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Proof. For any m we shall construct a complete consecutive integers matrix satisfying the property that can
easily be attained by independent column permutations.

Case 1: m is odd:

Let

Ai1 = m− i+ 1 ∀i ∈ {1, . . . ,m}

Ai2 =


i+ 1

2 if i is odd
m+ i+ 1

2 if i is even
∀i ∈ {1, . . . ,m}

and

Ai3 =


m+ i

2 if i is odd
i

2 if i is even
∀i ∈ {1, . . . ,m}.

With this permutation, for every i, si = 3
2 (m+ 1) and γ(A) = β(A) = 3

2 (m+ 1).

Case 2: m is even:

Let

Ai1 = m− i+ 1 ∀i ∈ {1, . . . ,m}

Ai2 =


i+ 1

2 if i is odd
m+ i

2 if i is even
∀i ∈ {1, . . . ,m}

and

Ai3 =


m+ i+ 1

2 if i is odd
i

2 if i is even
∀i ∈ {1, . . . ,m}.

With this permutation, for odd i, si = 3
2m+ 2 and for even i, si = 3

2m+ 1 and hence G(A) = 1. �

We can now extend Theorem 1 of Haus [2] to complete consecutive integers matrices. In particular, we
have the following.

Theorem 3. A complete consecutive integers matrix A ∈ Zm×d>0 for d ≥ 2 is jointly mixable if and only if
m | s. The permutation achieving the joint mix can be computed in linear time O(m · d). Moreover, if the
condition is not satisfied, then G(A) = 1.

Proof. Note that s = m(m+1)d
2 and m | s if and only if m is odd or d is even. If d is even, then the

permutation in the proof of Lemma 3 leads to a joint mix. If d is odd (say d > 3) and m is odd, then starting
with the permutation given in the proof of Lemma 4 for the first 3 columns, the remaining d − 3 columns
could be paired up with alternating permutations of increasing and decreasing orderings as in the proof of
Lemma 3 resulting in a permutation with γ(A) = β(A) = (m+1)d

2 . If d is odd (say d > 3) and m is even,
i.e. the only time the condition of the theorem’s statement is violated, then the permutation provided in
the proof of Lemma 4 for 3 columns could be augmented with alternating permutations of increasing and
decreasing orderings of the remaining d− 3 columns resulting in si = 3

2m+ 2 + (d−3)(m+1)
2 for an odd row

i, si = 3
2m+ 1 + (d−3)(m+1)

2 for an even row i and hence G(A) = 1. �
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Notice that, as pointed out by an anonymous referee, an analogous result for continuous distribution has
been obtained in Theorem 3.2 of [7], where joint mixability for continuous uniform distribution has been
completely characterized.

In the following lemma we collect some elementary properties of joint mixability that will be useful in
the sequel; we refer to Proposition 2.3 in [7] for proofs and generalizations.

Lemma 5. Let A be a real m × d matrix [Aij ]. Then, the joint mixability property is preserved with the
following perturbations:

1. Let B = [Bij ] be an m × d matrix such that Bij = Aij + uj for some uj ∈ R, j = 1, . . . , d. Then, B is
jointly mixable if and only if A is.

2. Let C = [Cij ] be an m × d matrix such that Cij = tAij for some nonnegative t ∈ R. Then, C is jointly
mixable if and only if A is.

3. Let D be an m × (d − 1) matrix attained from A by deleting a column of identical entries, say v ∈ R.
Then, D is jointly mixable if and only if A is.

The following matrices generalize complete consecutive integers matrices.

Definition 1. Let A = [Aij ] ∈ Rm×d be such that Aij = uj + ti for i = 1, . . . ,m, j = 1, . . . , d, uj ∈ R and
t ∈ R≥0. We call such a matrix a complete uniform gap matrix.

In particular, a complete consecutive integers matrix is a complete uniform gap matrix with uj = 0 for
j = 1, . . . , d and t = 1 and the following result immediately follows from Theorem 3 and Lemma 5.

Corollary 2. A complete uniform gap matrix A, i.e., a matrix A ∈ Rm×d such that Aij = uj + ti for
i = 1, . . . ,m, j = 1, . . . , d, uj ∈ R and t ∈ R≥0, is jointly mixable if and only if m | s. The permutation
achieving the joint mix can be computed in linear time O(m · d). Moreover, if the condition is not satisfied,
then G(A) = t.

Proof. A can be attained by multiplying each entry of a complete consecutive integers matrix of the same
dimensions by t and adding uj to each cell of column j of the resulting matrix. Clearly, these operations
change the gap by the multiplicative factor t. �

4. Matrices with restricted domain

We now consider matrices whose elements are from a set of discrete values M = {v1, . . . , vp}. Such
matrices encompass binary matrices and complete consecutive integers matrices.

Let M = {v1, . . . , vp} ⊆ R be a fixed set of values such that v1 > v2 > · · · > vp and A ∈Mm×d denote a
matrix with every column coming from the set M .

Theorem 4. For any matrix A ∈Mm×d, K(A) ≤ v1 − vp.

Proof. We shall proceed to show this result using induction on d. Clearly, for any A ∈Mm×1, maximum row
sum ≤ v1 and minimum row sum ≥ vp and thus the difference is at most v1 − vp. Assume inductively that
for any matrix of at most d− 1 columns satisfying the statement of the theorem, there exists a permutation
such that the difference between the maximum and minimum row sums is at most v1 − vp. Without loss of
generality, assume that si is the ith row sum in this permutation and that s1 ≥ s2, . . . ≥ sm. Now, if the
dth column is permuted such that A1d ≤ A2d ≤ · · · ≤ Amd, then the difference between the ith and jth row
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sums is si + Aid − (sj + Ajd) which is clearly at most v1 − vp since si − sj ≤ v1 − vp and Aid − Ajd ≤ 0.
Note that the procedure employed in this proof is essentially “Algorithm D” of [12]. �

The probabilistic version of this theorem is Corollary A.3 of [6].

Corollary 3. For any matrix A ∈ Mm×d, a permutation satisfying G(A) ≤ v1 − vp can be achieved in
O(d ·m logm) time complexity.

Proof. In order to permute each column, it is enough to order the elements in this column and the row sums
in the previous columns, hence the result follows. �

In particular, applying this corollary to a binary matrix A ∈ Bm×d we obtain Theorem 2 (with a
difference in computational complexity) in an alternative fashion. The following result is now immediate
from Theorem 4.

Theorem 5. For any matrix A ∈ Mm×d there is a r+v1−vp
r -approximation algorithm for problem (1) and a

r
r−(v1−vp) -approximation algorithm for problem (2).

Proof. Given A, let ΠK be the permutation achieving the value K(A) as described in the proof of Theorem 4
and without loss of generality assume that sΠK1 ≥ sΠK2 ≥ · · · ≥ sΠKm . Then,

sΠ
K

1
γ(A) ≤

sΠ
K

m + v1 − vp
γ(A) ≤ r + v1 − vp

γ(A) ≤ r + v1 − vp
r

since sΠKm ≤ β(A) ≤ r and γ(A) ≥ r. The procedure for computing ΠK clearly runs in polynomial time.
The result for problem (2) follows similarly. �

The subclass of integer matrices with entries from {0, 1, 2}, i.e. two-ary matrices, constitute an interesting
class of restricted domain matrices. We can use this subclass to show that the bound given in Theorem 4 is
tight. Consider the following instance of a 7× 4 matrix with entries from the set {0, 1, 2}:

A =



2 0 1 1
2 1 1 0
2 2 1 0
2 2 0 0
1 2 1 1
0 2 1 0
0 2 1 0


.

The matrix has s = 28. However, it is not jointly mixable and has the gap G(A) = 2 as can be verified
by direct calculation (γ(A) = 5 and β(A) = 3). The example also shows that the characterization given by
Haus in Theorem 1 for binary matrices is no longer valid.

Other, smaller examples can also be found: e.g.,

A =


2 0 2
2 2 1
1 2 1
0 2 1

 .

Lemma 6. Let A be an m×d integer matrix with elements from the set {0, 1, 2}. If m | s then either G(A) = 0
or G(A) = 2.
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Proof. We know that the gap is bounded above by 2. Let A ∈ Zm×d be an arbitrary {0, 1, 2}-matrix such
that m | s. Assume the problems (1) and (2) have been solved with respective permutations Π γ and Π β and
that G(A) = 1. By Observation 1, γ(A) ≥ r and β(A) ≤ r. If γ(A) = r then sΠγi = r for every i ∈ {1, . . . ,m}
since m | s contradicting the fact that G(A) = 1. If γ(A) = r + 1 and β(A) = r, then sΠβi = r for every
i ∈ {1, . . . ,m} since m | s again contradicting the fact that G(A) = 1. The alternative γ(A) ≥ r + 2 is not
possible since it implies β(A) > r. �

It is tempting to conjecture that G(A) = 1 if and only if m - s for two-ary matrices. However, this is not
true as the following example shows:

A =


2 0 2
2 0 0
1 2 0
0 2 0

 .
The above result and proof can be repeated, mutatis mutandis, for matrices with elements from an

enlarged ground set, e.g., {v1, . . . , vp}. The proof of the following lemma is thus left as an exercise.

Lemma 7. Let A be an m×d integer matrix with elements from the set {v1, . . . , vp}. If m | s then G(A) ̸= 1.

The converse of the statement in Lemma 6 is not true as the following example shows for a {0, 1, 2, 3}
matrix:

A =



1 0 2
2 3 1
3 1 2
3 3 1
2 3 1
3 3 1


where G(A) = 2 with r = 35/6.

5. Additional mixability properties of two-ary matrices

In this section we shall show that G(A) = K(A) for any {0, 1, 2} matrix. We begin with some simple
results.

Lemma 8. For any A ∈ {0, 1, 2}m×d, either sΠK1 = sΠγ1 or sΠKm = sΠβm .

Proof. Assume to the contrary that sΠK1 > sΠ
γ

1 and sΠKm < sΠ
β

m . Say, sΠK1 = sΠγ1 +t = γ(A)+t for some t ≥ 1
and sΠKm = sΠβm −u = β(A)−u = γ(A)−G(A)−u for some u ≥ 1. Then, K(A) = γ(A)+ t−γ(A)+G(A)+u.
However, this is only possible if G(A) = 0 and K(A) = 2 which is impossible due to Lemma 2. �

Theorem 6. For any A ∈ {0, 1, 2}m×d, G(A) = K(A).

Proof. Based on the results of Lemmas 1 and 2 and Theorem 4, in order to show that G(A) = K(A), we need
to exclude G(A) = 1 and K(A) = 2 case. With Theorem 4, we may assume without loss of generality that
sΠ

γ

1 −sΠ
γ

m = sΠβ1 −sΠ
β

m = 2. Assume to the contrary that for some A ∈ {0, 1, 2}m×d, K(A) = 2 but G(A) = 1.
In other words, the row sum vector in permutation Π γ is of the form (a, . . . , a, a−1, . . . , a−1, a−2, . . . , a−2)
and the row sum vector in permutation Π β is of the form (a+ 1, . . . , a+ 1, a, . . . , a, a− 1, . . . , a− 1) where
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a = γ(A). Since any column of identical elements can be removed without any loss of generality by Lemma 5,
we assume that neither A nor B has a column consisting of the same element.

Assume without loss of generality that among permutations with the largest row sum equal to a and
row sum difference equal to 2, say Π γ is a permutation where the number of row sums equal to a − 1 is
maximum. Similarly, let Π β be a permutation where the smallest row sum is equal to a − 1, the row sum
difference is equal to 2 and the number of row sums equal to a is maximum. For simplicity, let A and B be
the matrices resulting from permutations Π γ and Π β , respectively. Then, for any column k, Aik = 1 and
Ajk = 0 is not possible for any row i of A with sum equal to a and any row j with sum equal to a − 2,
since their swap will yield a matrix with a higher number of row sums equal to a− 1 violating the choice of
Π γ . Similarly, for such a pair of rows i and j, Aik = 2 and Ajk = 1 is not possible either for any k. So, for
any row i with sum equal to a and any row j with sum equal to a− 2, there should be some column k such
that Aik = 2 and Ajk = 0 in order to lead to a row sum difference of 2. But then Ail = 0 and Ajl = 1 for
l ̸= k is not possible either since by simultaneous swaps of ith and jth rows in columns k and l, one attains
a permutation with higher number of row sum values equal to a − 1. By the same reasoning, Ail = 1 and
Ajl = 2 for l ̸= k is not possible either. So, we can conclude that for any two rows i and j with row sum
difference equal to 2, |Aik − Ajk| = 0 or 2 for any column k. Moreover, if Aik = 1 for some row i with row
sum equal to either a or a− 2, then Ajk = 1 for every j ̸= i where sj(A) = a or a− 2. The same arguments
can be repeated to get the same result for matrix B.

Let k1, k2, m− k1 − k2 be the number of rows with sums equal to a, a− 1, and a− 2, respectively, in A.
Similarly, let l1, l2, m− l1 − l2 be the number of rows with sums equal to a+ 1, a, and a− 1, respectively,
in B. In order to have s1(A) = s1(B)− 1, one must have some column k such that |A1k −B1k| = 1. Assume
without loss of generality that B1k = 1. By the arguments in the preceding paragraph, this implies that
Bik = 1 for every i with si(B) = a+ 1 or a− 1. Moreover, since A1k ̸= 1, we must have Aik ̸= 1 for every i
with si(A) = a or a− 2. Since s(A) = s(B) we must have

k1a+ k2(a− 1) + (m− k1 − k2)(a− 2) = l1(a+ 1) + l2a+ (m− l1 − l2)(a− 1),

or, equivalently

2k1 + k2 = 2l1 + l2 +m. (4)

In matrix A, column k can only have 1’s in rows with sums equal to a− 1, and thus

k2 ≥ l1 +m− l1 − l2 = m− l2. (5)

Since K(A) = K(B) = 2, we must have the following relations

k1 ≥ 1, l1 ≥ 1, m− k1 − k2 ≥ 1, and m− l1 − l2 ≥ 1. (6)

However, system (4)–(6) is not feasible. If the first row in matrix A has element 1, inequality (5) would be
replaced by l1 ≥ m− k2 and the inequality system will lead to a similar contradiction. �

Note that G(A) is not always equal to K(A) for an integer matrix A. An example of a 3×3 integer matrix
for which G(A) < K(A) is given in [5].

5.1. A polynomial algorithm for computing K(A) for {0, 1, 2}-Matrices

Through Corollary 3, given a matrix {0, 1, 2}m×d we may assume that we have achieved a permutation
with the largest row sum difference at most 2 in time O(d ·m logm). Let A be the resulting matrix with a
row sum pattern of the form

(a+ 1, . . . , a+ 1  
K times

, a, . . . , a, a− 1, . . . , a− 1  
L times

).
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We define the following swap operations:

1. A single improving swap involves two rows i and j and a column p where Aip −Ajp = 1, si = sj + 2 and
swaps elements Aip with Ajp.

2. A single neutral swap involves two rows i and j and a column p where Aip − Ajp = 1, sj ≤ si ≤ sj + 1
and swaps elements Aip with Ajp.

3. A double improving swap involves rows i and j and columns p and q where si = sj + 2, (Aip + Aiq) −
(Ajp +Ajq) = 1 and swaps Aip with Ajp and Aiq with Ajq simultaneously.

4. A double neutral swap involves rows i and j and columns p and q where sj ≤ si ≤ sj + 1, (Aip + Aiq)
− (Ajp +Ajq) = 1 and swaps Aip with Ajp and Aiq with Ajq simultaneously.

5. An improving swap chain involves k+1 rows, say i1, i2, . . . , ik+1 where si2 = si3 = · · · = sik , si1 = si2 +1,
sik = sik+1 + 1 and each consecutive row pair il and il+1 for l ∈ {1, . . . , k} corresponds to either a single
or a double neutral swap and all swaps involve independent columns.

It is easy to see that each of the improving swap operations will reduce K + L by two.
Consider the following two-ary matrix A:

A =



2 1 2 2 0
2 0 1 2 2
0 1 2 1 2
0 2 1 2 1
1 0 2 0 2
1 1 1 1 1


.

The row sums are (7, 7, 6, 6, 5, 5) with a = 6 and K + L = 4. The boxed entries are subject to an improving
swap chain. In particular, rows 2 and 3, columns 1 and 2 correspond to a double neutral swap, rows 3 and 4
and column 3 correspond to a single neutral swap and rows 4 and 5 and columns 4 and 5 again correspond
to a double neutral swap. Rows 2 through 5 jointly characterize an improving swap chain. The resulting
matrix reduces K + L to 2 and becomes:

A =



2 1 2 2 0
0 1 1 2 2
2 0 1 1 2
0 2 2 0 2
1 0 2 2 1
1 1 1 1 1


with row sums (7, 6, 6, 6, 6, 5). Rows 1 and 6 and column 1 (similarly, columns 3 and 4) further define a
single improving swap and the resulting matrix is declared as jointly mixable.

We shall now describe a procedure which implements all improving exchanges until no more is possible.
As is apparent with the proof of Theorem 6, a permutation achieving K(A) row sum difference is one
where K +L value is minimum. In particular, we shall construct a network with two designated source and
destination nodes such that any source destination path in this network will correspond to an improving
swap operation. Then, finding all possible source destination paths in this network and minimizing K + L
value will be accomplished by a polynomial time maximum flow algorithm in an appropriately constructed
capacitated network, say G = (N, Ā). Let s and t be the source and destination nodes in N . Now, construct
the remaining nodes and arcs in G as follows:

1. For each row i ∈ {1, . . . ,K}, column p ∈ {1, . . . , d} add node (i, p) to N and arc (s, (i, p)) to Ā with
capacity equal to 1.
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2. For each row i ∈ {1, . . . ,K}, columns p, q ∈ {1, . . . , d} such that p < q add node (i, p, q) to N and arc
(s, (i, p, q)) to Ā with capacity equal to 1.

3. For each row i ∈ {m−L+ 1, . . . ,m}, column p ∈ {1, . . . , d} add node (i, p) to N and arc ((i, p), t) to Ā
with capacity equal to 1.

4. For each row i ∈ {m− L+ 1, . . . ,m}, columns p, q ∈ {1, . . . , d} such that p < q add node (i, p, q) to N
and arc ((i, p, q), t) to Ā with capacity equal to 1.

5. For each row i ∈ {K + 1, . . . ,m− L}, column p ∈ {1, . . . , d} add two nodes (i, p, I) and (i, p, II) to N .
6. For each row i ∈ {K + 1, . . . ,m−L}, columns p, q ∈ {1, . . . , d} such that p < q add two nodes (i, p, q, I)

and (i, p, q, II) to N .
7. For each node (i, p, II) where i ∈ {K + 1, . . . ,m − L} for which there exists some j ∈ {1, . . . ,K} such

that Ajp−Aip = 1, add arc ((j, p), (i, p, II)) to Ā with capacity equal to 1 for every such j ∈ {1, . . . ,K}.
8. For each node (i, p, q, II) where i ∈ {K + 1, . . . ,m−L} for which there exists some j ∈ {1, . . . ,K} such

that Ajp + Ajq − Aip − Aiq = 1, add arc ((j, p, q), (i, p, q, II)) to Ā with capacity equal to 1 for every
such j ∈ {1, . . . ,K}.

9. For each node (i, p, I) where i ∈ {K + 1, . . . ,m−L} for which there exists some j ∈ {m−L+ 1, . . . ,m}
such that Aip − Ajp = 1, add arc ((i, p, I), (j, p)) to Ā with capacity equal to 1 for every such
j ∈ {m− L+ 1, . . . ,m}.

10. For each node (i, p, q, I) where i ∈ {K+1, . . . ,m−L} for which there exists some j ∈ {m−L+1, . . . ,m}
such that Aip+Aiq −Ajp−Ajq = 1, add arc ((i, p, q, I), (j, p, q)) to Ā with capacity equal to 1 for every
such j ∈ {m− L+ 1, . . . ,m}.

11. For each i ∈ {K + 1, . . . ,m − L}, distinct columns p1, q1, p2, q2, add arcs ((i, p1, II), (i, p2, I)),
((i, p1, II), (i, p2, q2, I)), ((i, p1, q1, II), (i, p2, I)) and ((i, p1, q1, II), (i, p2, q2, I)) to Ā all with capacities
equal to 1.

12. For distinct i, j ∈ {K + 1, . . . ,m − L}, add arc ((i, p, I), (j, p, II)) to Ā with capacity equal to 1 if
Aip −Ajp = 1.

13. For distinct i, j ∈ {K + 1, . . . ,m − L}, add arc ((i, p, q, I), (j, p, q, II)) to Ā with capacity equal to 1 if
Aip +Aiq −Ajp −Ajq = 1.

In this capacitated s− t network G, the first copies of nodes (ending with “I”) mark potential beginning
cell(s) and the second copies of nodes (ending with “II”) mark potential ending cell(s) for neutral swap
operations within rows {K+1, . . . ,m−L}. Since there is no need for neutral swap operations within cells in
rows {1, . . . ,K} or in rows {m−L+ 1, . . . ,m}, the nodes corresponding to these rows are not duplicated. It
is not difficult to see that every s− t directed path in G corresponds to an improving swap (single, double,
or chain) and reduces K + L by 2. In particular, in the previous example, the depicted improving swap
chain corresponds to the directed path s → (2, 1, 2) → (3, 1, 2, II),→ (3, 3, I) → (4, 3, II) → (4, 4, 5, I) →
(5, 4, 5)→ t.

We can find all possible such paths by finding the maximum s− t flow in G. In other words, we have the
following result.

Theorem 7. Given an A ∈ {0, 1, 2}m×d, a permutation providing G(A) = K(A) can be accomplished in time
polynomial in m and d.

Proof. Finding the maximum flow in a network with unit capacities such as our constructed network
G = (N, Ā), can be accomplished in O(min{|N | 23 |Ā|, |Ā| 32 }) time [13]. Since in our network |N | is O(d2) and
Ā is O(md2) the result follows. �
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6. Linear relaxations

Interestingly, an approach to the problem via integer programming has not been studied before, to the
best of the authors’ knowledge, with the exception of [2] which uses an integer program in fixed dimensions
for a polynomiality argument and a PTAS (cf. Theorem 4 and Corollary 2 in [2]). In our computational
experience with the integer programming formulation of the problem we observed that the problem defies
solution in reasonable computation times even for moderately sized matrices with m ≤ 1000 and d ≤ 500.
More precisely, state-of-the-art integer programming solvers have difficulty closing the optimality gap in the
majority of randomly generated instances. An observation reinforcing this challenging aspect of the problem
is that the linear programming relaxation bound is quite weak as we show below. This feature obviously
invites further research on the structure of the problem.

Consider the linear relaxation of problems (1) and (2) (we denote by πk(i, j) the (i, j) entry of permutation
matrix πk; the linear relaxations result from relaxing the binary requirements on the variables πk(i, j)):

min z

st z ≥
d
k=1

m
j=1
πk(i, j)Ajk, ∀i = 1, . . . ,m

m
j=1
πk(i, j) = 1, ∀k = 1, . . . , d; ∀i = 1, . . . ,m

m
i=1
πk(i, j) = 1, ∀k = 1, . . . , d; ∀j = 1, . . . ,m

πk(i, j) ≥ 0, ∀k = 1, . . . , d; i, j = 1, . . . ,m

for problem (1), and

max z

st z ≤
d
k=1

m
j=1
πk(i, j)Ajk, ∀i = 1, . . . ,m

m
j=1
πk(i, j) = 1, ∀k = 1, . . . , d; ∀i = 1, . . . ,m

m
i=1
πk(i, j) = 1, ∀k = 1, . . . , d; ∀j = 1, . . . ,m

πk(i, j) ≥ 0, ∀k = 1, . . . , d; i, j = 1, . . . ,m

for problem (2). Let zγ and zβ denote the optimal values, respectively.
The following observations are easy to prove.

Lemma 9. For A ∈ Rm×d we have zγ = zβ = s/m = z(1/m) where z(1/m) is the optimal value of the linear
programming problem defined over an integer polyhedron:

min 1
m

m
i=1

d
k=1

m
j=1
πk(i, j)Aik

s.t.
d
j=1
πk(i, j) = 1, ∀k = 1, . . . , d, i = 1, . . . ,m
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m
i=1
πk(i, j) = 1, ∀k = 1, . . . , d, j = 1, . . . , d

πk(i, j) ≥ 0, ∀k, i, j.

Proof. Proof of equality between z(1/m) and s/m is by direct calculation. For the rest, let us consider
problem (2). Let Π be a permutation system. Clearly we have the following inequality

min
i
sΠi ≤

1
m

m
i=1
sΠi = s/m,

as an upper bound (since the mean of the elements is at least as large as the smallest element in a vector).
Therefore, the optimal value of the LP problem above is an upper bound on zβ . However, the matrix with
all elements equal to 1/m is feasible for the LP relaxation, hence attains the upper bound. The proof for
problem (1) is similar. �

7. Concluding remarks

In this paper we studied the problem of permuting the columns of a matrix to achieve the maximum
minimal row sum and the minimum maximal row sum, a problem that received renewed interest from
quantitative finance where the two values are desired to be as close as possible. While previous work has
concentrated on computational complexity and approximability of problems (1) and (2) and on identifying
cases where the equality of the maximum and the minimum is assured (hence, the term jointly mixable)
we approached the problem from a novel angle in that we focused on computing the gap (and/or bounding
the gap) between the aforementioned maximum and minimum. We were able to quantify the gap for a
subset of the integer matrices, and we showed equivalence of the problem of finding the gap to a related
problem for which a polynomial time solution procedure was given for matrices with {0, 1, 2} entries. We also
gave a simple polynomial time approximation algorithm. We are led to believe through our computational
experience that some of the results given in the paper remain true for a much larger class of integer (and
even real) matrices. We hope these problems will be resolved in the future.
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