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The motivation behind this study is the essential need for survivability in the telecommunications networks.
An optical signal should find its destination even if the network experiences an occasional fiber cut. We con-

sider the design of a two-level survivable telecommunications network. Terminals compiling the access layer
communicate through hubs forming the backbone layer. To hedge against single link failures in the network,
we require the backbone subgraph to be two-edge connected and the terminal nodes to connect to the backbone
layer in a dual-homed fashion, i.e., at two distinct hubs. The underlying design problem partitions a given
set of nodes into hubs and terminals, chooses a set of connections between the hubs such that the resulting
backbone network is two-edge connected, and for each terminal chooses two hubs to provide the dual-homing
backbone access. All of these decisions are jointly made based on some cost considerations. We give alternative
formulations using cut inequalities, compare these formulations, provide a polyhedral analysis of the small-
sized formulation, describe valid inequalities, study the associated separation problems, and design variable
fixing rules. All of these findings are then utilized in devising an efficient branch-and-cut algorithm to solve
this network design problem.
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1. Introduction
Today’s telecommunications networks are based on
wavelength division multiplexing (WDM), a technol-
ogy that allows each optical fiber to communicate
hundreds of optical signals each carrying dozens of
Gbps (109 bits per second) for a total of several
Tbps (1012 bits per second). Zhang and Mukherjee
(2004) reported the frequency of link failures as 4.39
fiber cuts per year per 1000 sheath miles. Accord-
ing to Kraushaar (1999), the total sheath miles owned
by all interexchange carriers in the United States
was 159,779 in the year 1998. These figures clearly
sum up to a tremendous amount of traffic being
affected during each fiber cut. Ultimately, network
survivability—the ability of the network to con-
tinue providing services to applications even in the
case of node or link failures—has become one of
the most critical issues in the design of telecom-
munications networks. This critical and challenging
aspect of network design problems arising in such
telecommunications applications has encompassed

many operations research studies, including the one
presented in this paper.

In the two-layer network infrastructure considered
in this paper, terminals are connected via a set of
hub nodes to a backbone network. To provide higher
availability, defined as the probability that the net-
work services are in the operating state at a random
time, we consider a two-layer survivability mecha-
nism that provides dual homing in the access network
and two-edge connectivity in the backbone network.

The most common survivable backbone design is
that of a ring network because of its simplicity in
rerouting in the case of link failures. A two-edge-
connected design has all the survivability advantages
of a ring design at a mesh topology. The gain in sim-
plicity of survivability of ring topologies comes at
the expense of more redundant capacity reservation
in contrast to mesh designs. Similar conclusions were
drawn by Shi and Fonseka (1997) in their compari-
son of mesh-restorable and self-healing ring networks
under a class of survivability measures.
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Dual homing is a technique for enhancing the sur-
vivability of the access networks by allowing the ter-
minal nodes to be connected to two distinct hub
nodes in the backbone network. One of these hubs
provides the primary connection, and the other one
is typically activated in case the primary connec-
tion fails. Clearly, dual homing hedges against single
access link failures. Given a fixed backbone network
topology, Din and Tseng (2002) considered the prob-
lem of assigning each terminal node to two hub loca-
tions. Their study proposes an integer programming
formulation and a genetic algorithm for the challeng-
ing case when the backbone nodes are capacitated
with respect to providing access.

Within the literature involving hierarchical topolo-
gies, Gourdin et al. (2002) provided a survey
that matches the telecommunications literature to
that of the concentrator location problems that are
more common in the operations research literature.
A commonly accepted classification scheme based
on the topologies of the backbone and access net-
works is provided in Klincewicz’s (1998) survey.
The most common topologies studied are stars,
trees, rings, complete and mesh networks, with the
access networks often being stars or trees. Klincewicz
(1998) introduced the “backbone network structure/
access network structure” notation to distinguish
various two-layer hierarchical designs. In this sur-
vey, however, all of the access networks are con-
sidered as single-homed to the backbone network.
To differentiate between single- and dual-homed
access to backbone connections, we shall append
Klincewicz’s (1998) notation with the adjective “dual-
homed” whenever necessary. In our problem, we seek
to find the lowest cost survivable network design by
partitioning a given set of nodes into terminals and
hubs, by choosing a set of edges connecting the hub
nodes such that the resulting backbone network is
two-edge connected, and by assigning each terminal
node to exactly two hub nodes. In particular, we look
for a two-edge-connected/star (dual-homed) design.
An example is given in Figure 1 where the squares
correspond to hubs and the circles correspond to ter-
minals. Solid edges represent the backbone connec-
tions, and the dashed arcs represent the connections
between terminals and hubs.

Survivable network design problems are often
restricted to a single layer. Grötschel et al. (1995) pro-
vided one of the earlier surveys in survivable net-
work design. Kerivin and Mahjoub (2005a) reviewed
the optimization techniques for both the capaci-
tated and uncapacitated versions of the survivable
network design problems under different connec-
tivity requirements. Kerivin and Mahjoub (2005b)
presented some polynomially solvable cases of the
survivable network design problems under special

Figure 1 An Example of a Two-Edge-Connected/Star (Dual-Homed)
Network

connectivity restrictions. Mahjoub (1994) provided an
in-depth analysis of the polytope associated with
the two-edge-connected subgraph problem. The stud-
ies by Mahjoub and Pesneau (2008), Stoer (1992),
and Vandenbussche and Nemhauser (2005) also relate
to the current work because they consider two-
edge-connected survivable designs, though only in
a single layer. Magnanti and Raghavan (2005) and
Balakrishnan et al. (2009) focused on single-level
survivable network design problems with connec-
tivity requirements that generalize our two-edge-
connectivity requirement in the backbone layer.

Labbé et al. (2004) performed a facial study of
the ring/star network design problems and provided
an efficient branch-and-cut algorithm. Fouilhoux
et al. (2012) considered the two-edge-connected/star
survivable network design problem, which has a close
relationship to the problem under consideration. They
provided a 0–1 integer programming model and a
detailed analysis of the associated polytope. They
studied classes of facet-defining inequalities along
with the computational analysis of the respective
separation problems, designed exact and/or heuris-
tic separation algorithms, and introduced an efficient
branch-and-cut algorithm. In this paper, a similar
methodology is adopted for the dual-homing varia-
tion where the access network is also survivable. As it
turns out, both the model development and the poly-
hedral analysis are more involved for this challenging
design problem.

There are a few related studies that consider sur-
vivability at both layers of the hierarchical design.
Lee and Koh (1997) considered the ring/ring (dual-
homed) version. They assumed a fixed ring topol-
ogy as the backbone network and studied the design
problem of the access network, established the NP-
completeness of this problem, proposed an integer
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programming formulation for its solution, and finally,
proposed an effective tabu search heuristic as a solu-
tion methodology. Thomadsen and Stidsen (2005) con-
sidered the same infrastructure. They provided a
branch-and-price algorithm for the case when the
design problems in the two levels are tackled as
sequential optimization problems, hence attaining a
suboptimal solution for the original problem. Proestki
and Sinclair (2000) contributed an efficient heuristic
for the same problem.

Balakrishnan et al. (1998) generalized the two-level
hierarchical survivable network design to that of mul-
titiers and provided a modeling framework that uni-
fies different technological layers and connectivity
requirements under the viewpoint of cost effective-
ness. Most of the hierarchical design problems in the
literature can be seen as special cases of these gen-
eral problems. Several special cases are analyzed and
worst-case performance bounds of certain heuristics
are provided.

Our study offers a contribution to the existing lit-
erature by providing an exact solution methodology
to the two-edge-connected/star (dual-homed) hier-
archical network design problem (2ECDHP). Unlike
most of the existing work in the literature, we do not
limit survivability and/or design considerations to a
single level. In particular, the contribution includes
two alternative 0–1 model developments based on
cut inequalities; a comparison of the formulations
based on the strength of the linear relaxations and
the complexity of the associated separation problems;
a detailed polyhedral study for the small size formu-
lation; development of exact and heuristic separation
algorithms for the families of facet-defining inequal-
ities considered; and several variable fixing rules.
Finally, all of this theoretical knowhow is utilized in
the development of a branch-and-cut algorithm as an
exact solution methodology. Our results on networks
of nearly 200 nodes indicate that the valid inequali-
ties and the variable fixing rules are very effective in
CPU time savings.

The dual-homing problem has a different combina-
torial structure than the single-homing problem, and
its solution requires specific developments. We can list
these as follows. (i) We need a larger size formulation
to obtain cut constraints that are similar to those for
the single-homing case. Unfortunately, the separation
problem associated with the resulting cut constraints
is NP-complete. As a result, in the dual-homing prob-
lem, we work with weaker cut constraints and use
valid inequalities obtained from the projection of the
large size formulation as cuts. (ii) We have new fami-
lies of facet-defining inequalities specific to dual hom-
ing; some are obtained from the projection of the large
size formulation, whereas others are based on the
idea of dual homing. We propose exact and heuristic

separation routines for these new families of valid
inequalities. (iii) We extend the F -partition inequal-
ities known for the single-homing problem to the
dual-homing problem. (iv) We propose some variable
fixing rules that are crucial in speeding up the sepa-
ration process and the solution of large instances.

This paper is organized as follows. In §2, two inte-
ger programming formulations and valid inequalities
are provided for the 2ECDHP. In §3, the underly-
ing polytope is analyzed, and necessary and suffi-
cient conditions for the valid inequalities to be facet
defining are provided. Section 4 is reserved for exact
and/or heuristic separation algorithms. In §5, sev-
eral rules for variable fixing are discussed. Section 6
presents the computational study, and §7 has the con-
cluding remarks.

2. Mathematical Models
In this section, we propose two integer program-
ming models for our 2ECDHP. The first model, called
the two-index model, uses O4n25 variables, whereas
the second one, called the three-index model, uses
O4n35 variables (n is the number of nodes). Both mod-
els have an exponential number of “cut” inequali-
ties. We show that the three-index model is stronger
than the two-index model, but the separation problem
associated with its cut inequalities is NP-complete.
We study the projection of the feasible set of the lin-
ear programming (LP) relaxation of the three-index
model onto the space of the two-index model and
derive some valid inequalities. First we give some
notation.

2.1. Notation
Let V = 80111 0 0 0 1n9 be the set of terminal nodes.
Node 0 is the root node of the two-level network
infrastructure, and it is a hub. We define E = 88i1 j92
i ∈ V 1 j ∈ V \8i99 to be the set of potential backbone
links, and G = 4V 1E5. Note that we assume a com-
plete graph and we do not allow multiple edges.
We denote by ce the fixed setup cost associated with
the backbone link e ∈ E. Similarly, dij is the cost asso-
ciated with installing an access link between termi-
nal node i ∈ V \809 and hub node j ∈ V . The value dii
corresponds to the cost of installing a hub at node
i ∈ V \809. We define A= 84i1 j52 i ∈ V \8091 j ∈ V \8i99.

For two disjoint subsets V1 and V2 of V , we denote
by 6V11V27 the set of edges with one endpoint in V1
and the other in V2. For S ⊆ V , let �4S5 = 6S1V \S7,
and let E4S5 be the set of edges with both endpoints
in S. For simplicity, we use �4i5 instead of �48i95. We
use G4S5 to denote the subgraph induced by S, i.e.,
G4S5= 4S1E4S55.

As a design problem, in 2ECDHP, we would like to
find a partition of V into C and T such that 0 ∈ C, a
set of backbone links E ′ ⊆ E4C5 such that the graph
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4C1E ′5 is two-edge connected, and an assignment of
each node in T to two distinct nodes in C such that
the total cost of installing backbone links, access links,
and hubs is minimum.

2.2. The Two-Index Formulation
We first present a two-index 0–1 model for 2ECDHP.
We define the following decision variables:

xe =











1 if edge e ∈ E is used in the backbone
network1

0 otherwise3

yij =











1 if node i ∈ V \809 is assigned to hub
node j ∈ V \8i91

0 otherwise3

ti =

{

1 if i ∈ V \809 is a hub1
0 otherwise0

The two-index formulation is as follows:

min
{

∑

i∈V \809

diiti +
∑

e∈E

cexe +
∑

4i1 j5∈A

dijyij

}

(1)

s.t.

2ti +
∑

j∈V \8i9

yij = 2 ∀ i ∈ V \8091 (2)

xe + yij ≤ tj ∀ 4i1 j5 ∈A2 j 6= 01 e = 8i1 j91 (3)

xe + yi0 ≤ 1 ∀ i ∈ V \8091 e = 8i1091 (4)

xe ≤ ti ∀ i ∈ V \8091 e = 8i1091 (5)

x4�4S55≥ 2ti +
∑

j∈S\8i9

yij ∀S ⊆ V \8091 i ∈ S1 (6)

xe ∈ 80119 ∀ e ∈ E1 (7)

yij ∈ 80119 ∀ 4i1 j5 ∈A1 (8)

ti ∈ 80119 ∀ i ∈ V \8090 (9)

The objective function (1) is the cost of installing
hubs and the cost of installing backbone and access
links. Constraints (2) are the assignment constraints that
ensure that a node is either a hub or assigned to two
distinct hubs. Because of constraints (3)–(5), if a node
is not a hub, then no other node can be assigned to it,
and no backbone link can be adjacent to it. These
constraints are referred to as conflict constraints. Con-
straints (6) are the cut inequalities and they impose
the two-edge connectedness requirement for the back-
bone network. They are similar to the cut inequalities
proposed by Labbé et al. (2004) for the ring/star prob-
lem. Let S ⊆ V \809 and i ∈ S. If i is a hub, then the
constraint becomes x4�4S55≥ 2 and should be satisfied
because there exists at least one hub, namely, the root
node, in the set V \S. If i is not a hub but is assigned

to two other hubs in S, again the constraint becomes
x4�4S55≥ 2 and imposes the installation of at least two
backbone edges on the cut between S and V \S. If i is
assigned to a hub l in set S and a hub in V \S, then
the constraint reduces to x4�4S55≥ 1. However, in this
case, the cut inequality for the same set S and the
hub node l is x4�4S55≥ 2, which dominates the former
inequality. Finally, if node i is assigned to two hubs
in V \S, then we do not know whether there is a hub
in set S, and the right-hand side of the constraint is
zero. Constraints (7)–(9) are variable restrictions.

The cut inequalities of the two-index formulation
can be separated exactly in polynomial time (see
Labbé et al. 2004, Fouilhoux et al. 2012) by solving a
series of minimum cut problems.

2.3. The Three-Index Formulation
Now we present a stronger three-index formulation.
For i ∈ V \809, let Ei = 88j1 k9 ∈ E\�4i59. Set Ei is the
set of distinct pairs of nodes to which node i can be
assigned if it is not a hub itself. We define the follow-
ing decision variables:

ui8j1 k9 =











1 if node i ∈ V \809 is assigned to nodes j

and k1 8j1 k9 ∈ Ei1

0 otherwise.

Now, we present our three-index model for
2ECDHP:

min
{

∑

i∈V \809

diiti +
∑

e∈E

cexe

+
∑

i∈V \809

∑

8j1 k9∈Ei

4dij + dik5ui8j1 k9

}

(10)

s.t.

ti +
∑

8j1 k9∈Ei

ui8j1 k9 = 1 ∀ i ∈ V \8091 (11)

xe +
∑

k∈V 2 8j1 k9∈Ei

ui8j1 k9 ≤ tj ∀ 4i1 j5 ∈A1

e = 8i1 j91 j 6= 01 (12)

xe +
∑

k∈V 2 801 k9∈Ei

ui801 k9 ≤ 1 ∀ i ∈ V \8091 e = 8i1091 (13)

xe ≤ ti ∀ i ∈ V \8091 e = 8i1091 (14)

x4�4S55≥ 2ti + 2
∑

8j1 k9∈Ei 2 �8j1 k9∩S�≥1

ui8j1 k9

∀S ⊆ V \8091 i ∈ S1 (15)

xe ∈ 80119 ∀ e ∈ E1 (16)

ui8j1 k9 ∈ 80119 ∀ i ∈ V \8091 8j1 k9 ∈ Ei1 (17)

ti ∈ 80119 ∀ i ∈ V \8090 (18)

Here, the objective function (10) is equal to the cost
of installing hubs, backbone links, and access links.
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The assignment constraints (11) ensure that each node
is a hub or it is assigned to two distinct nodes, and
the conflict constraints (12)–(14) ensure that nodes
are assigned to hub nodes and backbone links can
be installed between hub nodes. The cut inequali-
ties (15) model the requirement that the backbone
network is two-edge connected. Let S ⊆ V \809 and
i ∈ S. If i is a hub, i.e., ti = 1, or if i is assigned to at
least one hub in set S, i.e.,

∑

8j1 k9∈Ei 2 �8j1 k9∩S�≥1 ui8j1 k9 = 1,
then the constraint becomes x4�4S55 ≥ 2. Otherwise, i
is assigned to two hubs in V \S, and the constraint
reduces to x4�4S55 ≥ 0. Constraints (16)–(18) are vari-
able restrictions.

2.4. Comparison of the Formulations
Next, we compare the strength of the LP relaxations
of these two formulations. We first remark that for
S ⊆ V \809 and i ∈ S, when i is assigned to one hub
in S and one hub in V \S, the right-hand side of the
cut inequality (15) of the three-index model is equal
to 2 (hence this constraint imposes the installation of
a minimum of two edges on the cut between S and
V \S), whereas the cut inequality (6) of the two-index
formulation has the right-hand side equal to 1.

We append the constraints yij =
∑

k∈V \8i1 j9 ui8j1 k9 for
all 4i1 j5 ∈ A to the three-index formulation. Let F ′ be
the feasible set of the LP relaxation of the resulting
formulation, and let F be the feasible set of the LP
relaxation of the two-index formulation.

Theorem 1. Projx1 t1 y F
′ ⊆ F .

Proof. It is easy to show that the assignment and
conflict constraints are the same in both formula-
tions using the equivalence yij =

∑

k∈V \8i1 j9 ui8j1 k9 for all
4i1 j5 ∈A. Now we study the cut inequalities. Let S ⊆

V \809 and i ∈ S. The right-hand side of constraint (15)
is equal to

2ti + 2
∑

8j1 k9∈Ei 2 �8j1 k9∩S�≥1

ui8j1 k9

= 2ti +
∑

j∈S\8i9

∑

k∈V \8i1 j9

ui8j1 k9 +
∑

8j1 k9∈Ei∩�4S5

ui8j1 k9

= 2ti +
∑

j∈S\8i9

yij +
∑

8j1 k9∈Ei∩�4S5

ui8j1 k91

and is greater than or equal to the right-hand side
of the cut inequality (6). Hence, we can conclude
that for any 4x1 t1 y1u5 ∈ F ′, we have 4x1 t1 y5 ∈ F and
Projx1 t1 y F

′ ⊆ F . �
Even though the three-index formulation is

stronger, our preliminary tests showed that it is not
advantageous to use it in a branch-and-cut algorithm
because it takes much longer to solve its LP relax-
ations compared to those of the two-index formu-
lation. Next, we give another negative result about
this formulation. Consider the separation problem

associated with the cut inequalities (15). In particular,
given a nonnegative vector 4x1 t1u5, a fixed node i ∈

V \809, and a scalar 0 < � < 2, the separation problem
seeks to find a subset S ⊆ V \809 with i ∈ S such that
2ti + 2

∑

8j1 k9∈Ei 2 �8j1 k9∩S�≥1 ui8j1 k9 − x4�4S55 ≥ � or equiva-
lently by (11) that x4�4S55+ 2

∑

8j1 k9∈Ei 2 �8j1 k9∩S�=0 ui8j1 k9 ≤

2 − �. We show that this problem is NP-complete.

Theorem 2. The separation problem associated with the
cut inequalities (15) is NP-complete.

Proof. Clearly, the separation problem is in NP.
To establish this result, we provide a reduction from
the decision version of the Vertex Cover problem,
which is defined as follows. Given a graph G′ =

4V ′1E ′5 and a positive integer K, does there exist S ′ ⊆

V ′ such that �S ′� ≤ K and nodes in S ′ jointly cover all
edges in E ′ (Garey and Johnson 1979)? Given such an
instance, consider the following instance of the sep-
aration problem. Let V = V ′ ∪ 801 i9, E = E ′ ∪ 88i1 j92
j ∈ V ′9 ∪ 8801 j92 j ∈ V \8099, Ei = E ′ ∪ 88j1092 j ∈ V ′9,
x8j109 = 42 − �5/K for j ∈ V ′, x8i1 j9 = 0 for j ∈ V \8i9,
xe = 0 for e ∈ E ′, ui8j1 k9 = 1 for 8j1 k9 ∈ E ′, and
ui8j109 = 0 for j ∈ V ′. Now, let S ′ be a vertex cover
of size at most K in G′. Let S = S ′ ∪ 8i9. Because
S ′ is a cover, no edge in E ′ has both endpoints in
V ′\S ′ and

∑

8j1 k9∈Ei 2 �8j1 k9∩S�=0 ui8j1 k9 = 0. Then, x4�4S55 +

2
∑

8j1 k9∈Ei 2 �8j1 k9∩S�=0 ui8j1 k9 = �S ′�42 − �5/K ≤ 2 − �. Simi-
larly, if inequality (15) is violated by at least � for
some S ⊆ V \809 and i ∈ S, then let S ′ = S\8i9. No
edge of E ′ can join two nodes in V ′\S ′ for otherwise
2
∑

8j1 k9∈Ei 2 �8j1 k9∩S�=0 ui8j1 k9 ≥ 2. Thus, S ′ is a node cover
for G′. �

2.5. Projection Inequalities
Because the three-index formulation has large linear
relaxations and it is difficult to separate its cut inequal-
ities, we use the two-index formulation in our branch-
and-cut algorithm. It is possible to strengthen this
formulation using valid inequalities that are obtained
from the projection of the three-index formulation.

We present two such families of valid inequali-
ties. Let S ⊆ V \809, i ∈ S, and j ∈ S\8i9. The “in-cut”
inequality is

x4�4S55≥ 2ti + 2yij 0 (19)

The validity of this inequality can be explained as fol-
lows. If node i is a hub or if it is assigned to hub j
in set S, then because there exists at least one hub in
set S, the inequality imposes the installation of at least
two backbone edges on the cut between S and V \S.
Otherwise, the inequality is redundant.

Similarly, the validity of the following inequality is
intuitive. Let S ⊆ V \809, i ∈ S, and j ∈ V \S. The “out-
cut” inequality is

x4�4S55≥ 2ti +
∑

k∈S\8i9

yik + yij −
∑

k∈V \4S∪8j95

yik0 (20)
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If node i is a hub, or if it is assigned to two hubs in
set S, or if it is assigned to one hub in set S and to
hub j in set V \S, then the inequality is x4�4S55≥ 2 and
should be satisfied because there exists at least one
hub in set S. In the remaining cases, the right-hand
side is nonpositive and the inequality is redundant.

More formally, we describe Theorem 3 as follows.

Theorem 3. In-cut (19) and out-cut (20) inequalities
are implied by the three-index formulation.

Proof. By Farkas’ Lemma (see, e.g., Schrijver 1986),
given 4x1 t1 y5, there exists a vector u that satisfies

∑

8j1 k9∈Ei∩�4S5

ui8j1 k9 ≤ x4�4S55− 2ti −
∑

j∈S\8i9

yij

∀S ⊆ V \8091 i ∈ S1 (21)
∑

k∈V 2 8j1 k9∈Ei

ui8j1 k9 = yij ∀ 4i1 j5 ∈A1 (22)

ui8j1 k9 ≥ 0 ∀ i ∈ V \8091 8j1 k9 ∈ Ei1 (23)

if and only if

∑

i∈V \809

∑

S⊆V \8092 i∈S

(

x4�4S55− 2ti −
∑

j∈S\8i9

yij

)

�iS

+
∑

4i1 j5∈A

�ijyij ≥ 01 (24)

for all vectors 4�1�5 such that
∑

S⊆V \8092 �S∩8j1 k9�=11 i∈S

�iS +�ij +�ik ≥ 0

∀ i ∈ V \8091 8j1 k9 ∈ Ei1 (25)

�iS ≥ 0 ∀S ⊆ V \8091 i ∈ S0 (26)

First note that the above system can be disaggregated
for each node i ∈ V \809. Now consider a vector 4�1�5
where �iS = 1 for some S ⊆ V \809 with i ∈ S and all
other entries of � are zero. One feasible � vector is
�ij = −1 for some j ∈ S\8i9, �ik = 1 for all k ∈ S\8i1 j9,
and other entries of � are zero. This yields the in-cut
projection inequality.

Next consider a vector 4�1�5 where �iS = 1 for some
S ⊆ V \809 with i ∈ S and all other entries of � are zero.
Let j ∈ V \S. Consider the vector � where �ij = −1,
�ik = 1 for all k ∈ V \4S∪ 8j95, and other entries of � are
zero. The resulting projection inequality is the out-cut
inequality. �

We conclude this section with the following remark.
If we replace the cut inequalities (6) with the in-cut
inequalities (19) or with the out-cut inequalities (20) in
the two-index formulation, we obtain two alternative
formulations for 2ECDHP. It is not possible to com-
pare these two-index formulations among themselves
(later, we prove that all three families of inequali-
ties (6), (19), and (20) are facet defining under some

conditions). However, we can conclude that the three-
index formulation is stronger than these two new
formulations because inequalities (19) and (20) are
projection inequalities.

2.6. Dual-Homing and Extended F -Partition
Inequalities

If a node i ∈ V \809 is assigned to a hub, say j ∈ V \8i9,
then it is not a hub node and must be assigned to
a second hub node. This yields the following fam-
ily of valid inequalities named as “dual-homing”
inequalities:

yij ≤
∑

k∈V \8i1 j9

yik0 (27)

We can also extend the family of F -partition inequal-
ities introduced by Mahjoub (1994) to 2ECDHP.
A similar extension was performed by Fouilhoux
et al. (2012) for the single assignment version of the
problem. Let V01 0 0 0 1Vp be a partition of V such that
Vl 6= �, for l = 01 0 0 0 1 p and 0 ∈ V0. Let il ∈ Vl be a fixed
node for l = 11 0 0 0 1 p and F ⊆ �4V05 such that �F � =

2k+ 1 for some k ≥ 0 and integer. Let �4V01 0 0 0 1Vp5 be
the set of edges whose endpoints are in different sets
of the partition.

Consider the following valid inequalities for
2ECDHP:

x4�4Vl55+
∑

j∈V \Vl

yil j ≥ 2 l = 11 0 0 0 1 p1 (28)

−xe ≥ −1 ∀ e ∈ F 1 (29)

xe ≥ 0 ∀ e ∈ �4V05\F 0 (30)

Adding up these inequalities, dividing the resulting
inequality by 2, and rounding up the right-hand side
yields:

x4�4V01 0 0 0 1Vp5\F 5+

∑p

l=1

∑

j∈V \Vl
yil j

2
≥ p− k0 (31)

These inequalities will be called “extended F -partition
inequalities.” Observe that the left-hand side of
inequality (31) may be fractional. In Theorem 4, we
show that the right-hand side can be rounded up even
if the left-hand side is fractional.

Theorem 4. The extended F -partition inequality (31) is
valid for P.

Proof. If the left-hand side of inequality (31) is
integer, then p − �F �/2 can be rounded up to p− k,
and hence (31) is a valid inequality. Now suppose
that

∑p

l=1

∑

j∈V \Vl
yil j is odd. Then there exists at least

one l̂ ∈ 811 0 0 0 1 p9 such that il̂ is assigned to one
hub in Vl̂ and one hub in V \Vl̂. Because there
exists a hub in set Vl̂, the inequality x4�4Vl̂55≥ 2 is
satisfied. Now summing inequalities (28) for l 6= l̂,
(29), (30), and x4�4Vl̂55 ≥ 2 and dividing by 2

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
9.

17
9.

72
.1

98
] 

on
 0

2 
O

ct
ob

er
 2

01
7,

 a
t 0

1:
26

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
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gives x4�4V01 0 0 0 1Vp5\F 5+ 4
∑p

l=12 l 6=l̂

∑

j∈V \Vl
yil j5/2 ≥ p−

�F �/2. Because 4
∑p

l=12 l 6=l̂

∑

j∈V \Vl
yil j5/2 is integer, the

right-hand side of this inequality can be rounded
up. This yields inequality x4�4V01 0 0 0 1Vp5\F 5 +

4
∑p

l=12 l 6=l̂

∑

j∈V \Vl
yil j5/2 ≥ p − k, which dominates

inequality (31). Hence, we can conclude that (31) is
valid. �

3. Polyhedral Analysis
In this section, we conduct a polyhedral analysis. First
we eliminate the variables ti for i ∈ V \809 to work
with a full-dimensional polytope.

For i ∈ V \809, from constraints (2), we have ti =

1 − 4
∑

j∈V \8i9 yij5/2. Substituting this in our two-index
model yields

z=
∑

i∈V \809

dii + min
{

∑

e∈E

cexe +
∑

4i1 j5∈A

d′

ijyij

}

s.t.

2xe + 2yij +
∑

k∈V \8j9

yjk ≤ 2

∀ 4i1 j5 ∈A2 j 6= 01 e = 8i1 j91 (32)

xe + yi0 ≤ 1 ∀ i ∈ V \8091 e = 8i1091 (33)

2xe +
∑

k∈V \8i9

yik ≤ 2 ∀ i ∈ V \8091 e = 8i1091 (34)

x4�4S55+
∑

j∈V \S

yij ≥ 2 ∀S ⊆ V \8091 i ∈ S1 (35)

xe ∈ 80119 ∀ e ∈ E1 (36)

yij ∈ 80119 ∀ 4i1 j5 ∈A1 (37)

where d′
ij = dij − dii/2 for 4i1 j5 ∈A.

To show that this formulation is equivalent to the
two-index formulation of §2, we need to ensure that
∑

j∈V \8i9 yij ∈ 80129 and so ti ∈ 80119 for all i ∈ V \809.
Let X = 84x1y5 ∈ R�E�+�A�2 4x1y5 satisfies (32)–(37)9

and P = conv4X5. Let 4x1y5 ∈ X and i ∈ V \809.
If x4�4i55 > 0, then constraints (32)–(34), (36), and
(37) imply that

∑

j∈V \8i9 yij = 0. On the other hand,
if x4�4i55 = 0, the cut inequality (35) for S = 8i9
implies that

∑

j∈V \8i9 yij ≥ 2. Because
∑

j∈V \8i9 yij ≤ 2
from constraints (34), we have

∑

j∈V \8i9 yij = 2. Hence,
∑

j∈V \8i9 yij ∈ 80129 in any feasible solution to the above
model.

We assume that G is complete and �V � ≥ 7 in the
sequel. The proofs of the theorems of this section
are provided as supplemental material (available at
http://dx.doi.org/10.1287/ijoc.1120.0541).

Theorem 5. P is full dimensional.

Theorem 6. (i) For e ∈ E, inequality xe ≥ 0 is facet
defining for P.

(ii) For 4i1 j5 ∈ A, inequality yij ≥ 0 is facet defining
for P.

(iii) For 4i1 j5 ∈ A such that j 6= 0 and e = 8i1 j9,
inequality (32) defines a facet of P.

(iv) Let i ∈ V \809 and e = 8i109. Then inequality (34)
defines a facet of P.

Note that the inequalities xe ≤ 1 for e ∈ E and yij ≤ 1
for 4i1 j5 ∈A are not facet defining as they are implied
by constraints (32)–(34). Let i ∈ V \809 and e = 8i109.
Inequality (33) is not facet defining either because all
feasible solutions that satisfy xe + yi0 = 1 also satisfy
yi0 =

∑

k∈V \801i9 yik. The next theorem gives necessary
and sufficient conditions for the cut inequalities (35)
to be facet defining for P.

Theorem 7. Let S ⊆ V \809 such that S 6= � and i ∈ S.
The cut inequality (35) defines a facet of P if and only if
the following conditions are satisfied:

(i) �V \S� ≥ 3
(ii) �S� ≥ 4 or �S� = 1.

In §2, we derived two families of projection inequal-
ities. These inequalities involve the variables ti. Elim-
inating the ti variables in the in-cut (19) and out-cut
(20) inequalities, we obtain

x4�4S55+
∑

k∈V \8i1 j9

yik − yij ≥ 2 (38)

and
x4�4S55+ 2

∑

l∈V \4S∪8j95

yil ≥ 21 (39)

respectively.

Theorem 8. (i) Let S ⊆ V \809 such that S 6= �, i ∈ S,
and j ∈ S\8i9. If �S� ≥ 3 and �V \S� ≥ 3, then the in-cut
inequality (38) defines a facet of P.

(ii) Let S ⊆ V \809 such that S 6= �, i ∈ S, and j ∈ V \S.
If �S� ≥ 4 and �V \S� ≥ 3, then the out-cut inequality (39)
defines a facet of P.

We finally give sufficient conditions for dual-
homing and extended F -partition inequalities to be
facet defining for P.

Theorem 9. For 4i1 j5 ∈A, the dual-homing inequality
(27) defines a facet of P.

Theorem 10. The extended F -partition inequality (31)
defines a facet for P if

(a) G4Vl5 is 3-edge connected for l = 01 0 0 0 1 p,
(b) �F ∩ �4il5� ≤ 1 and F ∩ �4j5 = � for j ∈ Vl\8il9 for

l = 11 0 0 0 1 p, and
(c) �F ∩ �4j5� ≤ 1 for j ∈ V0\809.

4. Separation Algorithms
Because our mathematical model contains an expo-
nential number of constraints and most of our valid
inequalities are exponential in number, we propose a
branch-and-cut algorithm for 2ECDHP. In this section,

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
9.

17
9.

72
.1

98
] 

on
 0

2 
O

ct
ob

er
 2

01
7,

 a
t 0

1:
26

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
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we describe the separation algorithms that are used
to identify violated inequalities.

Suppose that we are given a solution 4x∗1y∗1 t∗5 of
an LP relaxation. We define V ∗ = 8i ∈ V 2 x∗4�4i55 > 09
and E∗ = 8e ∈ E2 x∗

e > 09. By the conflict constraints,
t∗i > 0 for i ∈ V ∗\809. The graph G∗ = 4V ∗1E∗5 is our
support graph. This graph may be disconnected. Let
Gj = 4V j1Ej5 for j = 01 0 0 0 1 r be the jth connected com-
ponent of G∗. Without loss of generality, we assume
that 0 ∈ V 0. Clearly G0 =G∗ if G∗ is connected.

4.1. Cut Inequalities
For a fixed node i ∈ V \809, the cut inequality (6) can be
separated exactly by solving a minimum cut problem
as explained by Labbé et al. (2004). Let G∗

i = 4V ∗ ∪

8i91E∗
i 5, where E∗

i = E∗ ∪ 88i1 j92 j ∈ V ∗ and 4i1 j5 ∈ A9.
If edge e ∈ E∗ is such that i 6∈ e, we let its capacity be
equal to x∗

e . For an edge of the form 8i1 j9, the capacity
is set to x∗

ij +y∗
ij . The most violated cut inequality with

fixed node i can be found by solving a minimum cut
problem between nodes i and 0 in graph G∗

i . If the
minimum cut capacity is less than 2, then there is a
violated cut inequality.

Our separation procedure is given in Algorithm 1.
We have two remarks. Let V̄ ∗ = 8i ∈ V \V ∗2 y∗

ij +

y∗

ik < 2 ∀ 8j1 k9 ∈ Ei9. First, if S and i define a vio-
lated cut inequality, then S ∪ 8k ∈ V̄ ∗\8i92 y∗

ik > 09
and i also define a violated inequality with a vio-
lation that is at least as large as the one of S and
i because x∗4�4k55 = 0 for all k ∈ V̄ ∗. Second, the
nodes in V \4V ∗ ∪ V̄ ∗5= 8i ∈ V 2 x∗4�4i55= 01∃ 8j1 k9 ∈ Ei

with y∗
ij + y∗

ik = 29 are not considered as fixed nodes
in the separation algorithm. Let i be such a node and
suppose that it is assigned to two nodes j and k. Also
suppose that i and S ⊆ V \809 with i ∈ S define a vio-
lated cut inequality. For the inequality to be violated,
at least one of j and k must be in S. Say j is in S; then
t∗j = 1. Hence, the cut inequality for S and j is also
violated, and the violation is at least as large as the
one for S and i.

To speed up the separation of cut inequalities, we
use heuristics similar to those presented by Fouilhoux
et al. (2012). For a given connected component Gj =

4V j1Ej5 with j 6= 0 and a fixed node i ∈ V j , let S = V j ∪

8k ∈ V̄ ∗2 y∗

ik > 09. Because x∗4�4S55 = 0 and t∗i > 0, the
cut inequality defined by S and i is violated. For i ∈ V̄ ∗

with
∑

k∈V \4V j∪8i95 y
∗

ik < 2, the cut inequality defined by
i and S = V j ∪ 8k ∈ V̄ ∗\8i92 y∗

ik > 09∪ 8i9 is also violated
because x∗4�4S55= 0, 2t∗i +

∑

k∈S\8i9 y
∗

ik = 2−
∑

k∈V \S y
∗

ik >
2 −

∑

k∈V \4V j∪8i95 y
∗

ik > 0.
For the connected component G0, we use the global

minimum cut algorithm of Hao and Orlin (1994) with
the capacity of each edge e ∈ E0 set to x∗

e . Given a
capacitated graph, the global minimum cut is defined
as the minimum cut in this graph among all possible
cuts between any two source and destination pairs.

The algorithm proposed by Hao and Orlin (1994) is
as efficient as solving a single minimum cut prob-
lem. It reports �V 0� − 1 cut sets, say S11 S21 0 0 0 1 S�V 0�−1,
one of which is a global minimum cut. Because the
underlying graph is undirected, we may assume that
0 ∈ V 0\Sl for l = 11 0 0 0 1 �V 0� − 1. If the capacity of the
global minimum cut is at least 2, then we can con-
clude that there exists no violated cut inequality. Oth-
erwise, for each l = 11 0 0 0 1 �V 0� − 1, we compute the
violation of the cut inequality defined by Sl ∪ 8i9 and i
for every i ∈ Sl ∪ V̄ ∗ and add a cut with the maximum
violation.

Algorithm 1 (Cut inequality separation)
C ← V̄ ∗ ∪ 4V 0\8095
for j = 1 to r do

i′ ← arg mini∈V j∪V̄ ∗

∑

k∈V \4V j∪8i95 y
∗

ik

if
∑

k∈V \V j y∗

i′k < 2 then
add the violated cut inequality for
S = V j ∪ 8k ∈ V̄ ∗\8i′92 y∗

i′k > 09∪ 8i′9 and i′

C ←C\8i′9
end

end
use Hao–Orlin algorithm on G0 and find �V 0� − 1

cut sets denoted by S11 0 0 0 1 S�V 0�−1

for l = 1 to �V 0� − 1 do
if capacity of 6Sl1V 0\Sl7 is less than 2 then

i′ ← arg mini∈Sl∪V̄
∗

∑

k∈V \4Sl∪8i95
y∗

ik

if the cut inequality defined by Sl ∪ 8i′9 and i′ is
violated then
add the violated cut inequality
C ←C\8i′9

end
end

end
forall i ∈C do

find a minimum cut with cutset S between i
and 0 on G∗

i

if capacity of the cut defined by S is less
than 2 then

add the violated cut inequality defined by
S ∪ 8k ∈ V̄ ∗\8i92 y∗

ik > 09 and i
end.

Finally, we use exact separation for the nodes in
V̄ ∗ ∪ 4V 0\8095 for which no violated cut inequality has
been added in the heuristic part of the algorithm.

4.2. In-Cut Inequalities
In-cut inequalities (19) are defined by a node set S ⊆

V \809 and two fixed nodes i ∈ S and j ∈ S\8i9. When
i and j are fixed, the right side of the inequality
is fixed. Hence, to find the most violated inequal-
ity for i and j , we need to compute a set S with
i1 j ∈ S such that x∗4�4S55 is minimum. Let G∗

ij = 4V ∗ ∪

8i1 j91E∗ ∪ 88i1 j995. We set the capacity of edge e ∈ E∗

other than 8i1 j9 to x∗
e and capacity of 8i1 j9 to 2 so that
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i and j are in the same set. We solve the minimum cut
problem between i and 0 on G∗

ij . If the capacity of the
minimum cut is less than 24t∗i +y∗

ij5, then a violated in-
cut inequality is found. This way, in-cut inequalities
can be separated exactly by solving O4�V �25 minimum
cut problems.

We first apply a heuristic separation based on the
cut sets S11 0 0 0 1 S�V 0�−1 generated by the Hao and Orlin
(1994) algorithm. If the capacity of a given cut set S
is less than 2, we look for the node pair i1 j ∈ S that
maximizes t∗i + y∗

ij . We apply exact separation for the
nodes in V̄ ∗ ∪ 4V 0\8095 for which no violated in-cut
inequality is found in the heuristic phase. The sepa-
ration procedure is presented in Algorithm 2.

Algorithm 2 (In-cut inequality separation)
C ← V̄ ∗ ∪ 4V 0\8095
use Hao–Orlin algorithm on G0 and find �V 0� − 1

cut sets denoted by S11 0 0 0 1 S�V 0�−1

for l = 1 to �V 0� − 1 do
if capacity of 6Sl1V 0\Sl7 is less than 2 then

S ← Sl ∪ V̄ ∗

4i′1 j ′5← arg maxi∈S1 j∈S\8i9 24t∗i + y∗
ij5

if 24t∗i′ + y∗
i′j ′5 > x∗4�4S55 then

add the violated in-cut inequality defined by
S, i′, and j ′

C ←C\8i′9
end

end
end
forall i ∈C do

forall j ∈ V ∗\8i9 do
find a minimum cut with cut set S between i

and 0 on G∗
ij

if capacity of the cut defined by S is less
than 24t∗i + y∗

ij5 then
add the violated in-cut inequality defined by
S, i, and j

end
end.

4.3. Out-Cut Inequalities
An out-cut inequality (20) is defined by a node set
S ⊆ V \809 and two fixed nodes i ∈ S and j ∈ V \S.
A violated out-cut inequality with fixed nodes i and j
can be found by solving a minimum cut problem.
Let G∗

ij = 4V ∗ ∪ 8i1 j91E∗
ij5, where E∗

ij = E∗ ∪ 88i1 k92 k ∈

V ∗\8j9 and 4i1 k5 ∈ A9∪ 8801 j99. Let e ∈ E∗
ij be different

from 801 j9. We set the capacity of e to x∗
e if i y e or

j ∈ e, and to x∗
iv + 2y∗

iv if e = 8i1 v9 otherwise. Note that
node j must be in V \S to define the inequality. To
enforce this, we set the capacity of edge 801 j9 to 2.
Solving a minimum cut problem between i and 0 on
G∗

ij will reveal a violated out-cut inequality with fixed
nodes i and j if one exists. Consequently, the out-cut

inequalities can be separated exactly in polynomial
time by solving O4�V �25 minimum cut problems.

Consider the cut sets S11 0 0 0 1 S�V 0�−1, attained by the
application of the Hao and Orlin (1994) global cut
algorithm to G0. For a given cut set Sl with capac-
ity less than 2, the set S = Sl ∪ V̄ ∗ and the node pair
i ∈ S and j ∈ V \S that minimizes

∑

k∈V \4S∪8j95 y
∗

ik might
define a potential violated out-cut inequality.

Similar to the cut inequality and in-cut inequality
separation, we consider the nodes of V̄ ∗ ∪ 4V 0\8095,
first apply heuristic separation, and then resort to
exact separation for the remaining nodes. We provide
the separation procedure in Algorithm 3.

Algorithm 3 (Out-cut inequality separation)
C ← V̄ ∗ ∪ 4V 0\8095
use Hao–Orlin algorithm on G0 and find �V 0� − 1

cut sets denoted by S11 0 0 0 1 S�V 0�−1

for l = 1 to �V 0� − 1 do
if capacity of 6Sl1V 0\Sl7 is less than 2 then

S ← Sl ∪ V̄ ∗

4i′1 j ′5← arg mini∈S1 j∈V \S

∑

k∈V \4S∪8j95 y
∗

ik

if x∗4�4S55+ 2
∑

k∈V \4S∪8j ′95 y
∗

i′k < 2 then
add the violated out-cut inequality

defined by S, i′, and j ′

C ←C\8i′9
end

end
end
forall i ∈C do

forall j ∈ V ∗\8i9 do
find a minimum cut with cut set S between i

and 0 on G∗
ij

if capacity of the cut defined by S is less
than 2 then

add the violated out-cut inequality defined by
S, i, and j

end
end.

4.4. Extended F -Partition Inequalities
We use the heuristic separation algorithm of
Fouilhoux et al. (2012) for the extended F -partition
inequalities. These inequalities are separated if the
support graph is connected. We search for fractional
odd cycles that do not use node 0. Let 8v11 0 0 0 1 vp9
be the set of nodes inducing a fractional odd cycle.
Let V0 = V \8v11 0 0 0 1 vp9. Edges from �4V05 with val-
ues greater than 1/2 are chosen for F in such a way
that �F � is odd. We check the corresponding inequal-
ity for violation. If no violated inequality is found in
this stage, we set the capacity of each edge e to 1−x∗

e ,
and, using the algorithm of Hao and Orlin (1994) on
the support graph, we find �V ∗� − 1 cuts. Let S be
a cut set obtained by this algorithm such that 0 ∈ S
and V0 = S ∪ V̄ ∗. Let V \V0 = 8v11 0 0 0 1 vp9. Then our
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partition is 4V01v11 0 0 0 1 vp5. We construct F as previ-
ously explained. The extended F -partition inequality
defined by this partition and F is added if it is vio-
lated. The algorithm is given in Algorithm 4.

Algorithm 4 (Extended F -partition inequality
separation)
repeat

find a fractional odd cycle v11 0 0 0 1 vp in G∗

such that vi 6= 0 for i = 11 0 0 0 1 p
V0 ← V \8v11 0 0 0 1 vp9
construct F ⊆ 8e ∈ �4V052 x

∗
e > 0059 so that �F � is odd

add the extended F -partition inequality for
4V01v11 0 0 0 1 vp5 if violated

until no fractional odd cycle is found;
if no violated extended F -partition inequality is

found above then
use algorithm of Hao and Orlin on G∗ with edge

capacities set to 1 − x∗
e

foreach cut 6S1V ∗\S7 such that 0 ∈ S found in the
algorithm do
V0 ← S ∪ V̄ ∗

construct F ⊆ 8e ∈ �4V052 x
∗
e > 0059 so that

�F � is odd
add the extended F -partition inequality for

4V01v11 0 0 0 1 vp5 where V \V0 = 8v11 0 0 0 1 vp9 if
violated

end
end.

5. Variable Fixing
In this section, we propose rules to fix some of the
variables. These rules can be grouped into two classes.
The first class of fixing rules only eliminates fractional
solutions. The second class, however, cuts off inte-
ger solutions provided that they are not potentially
uniquely optimal. The variable fixing rules we pro-
pose are as follows:

(1) Let 4i1 j5 ∈A. If dij >dik for every 4i1 k5 ∈A, then
we can fix yij = 0.

(2) Let z̄ be the objective function value of a feasible
solution, and let z be the objective function value of
the current linear program. Let x̄ and ū denote the
solution and reduced cost vectors, respectively.

(a) If variable xi is a nonbasic variable at its
lower bound (x̄i = 0), and if z + ūi > z̄, then we can
fix xi = 0.

(b) If variable xi is a nonbasic variable at its
upper bound (x̄i = 1), and if z − ūi > z̄, then we can
fix xi = 1.

(3) Let H = 8i ∈ V 2 ti = 19 be the set of nodes that
are fixed to be hub nodes at some particular node of
the branch-and-cut tree. If �H � ≥ 2 then at least two
of the nodes that will be hubs in the optimal solution
corresponding to this subtree are known. Let i ∈ V \H

and u1v ∈H be distinct nodes such that diu ≤ div. Then
for every j ∈ V \8i9 such that dij >div we can fix yij = 0.

(4) Let e = 8i1 j9 ∈ E. If xe is fixed to 1, then we can
fix yik = 0 for every k ∈ V \8i9, yjk = 0 for every k ∈

V \8j9, and ti = tj = 1.
(5) Let 4i1 j5 ∈ A. If yij is fixed to 1, then we can

fix yjk = 0 for every k ∈ V \8j9, yki = 0 for every k ∈

V \8i109, xe = 0 for every e ∈ �4i5, ti = 0, and tj = 1.
(6) Let i ∈ V \809. If ti is fixed to 1, then we can fix

yij = 0 for every j ∈ V \8i9.
(7) Let i ∈ V \809. If ti is fixed to 0, then we can

fix yji = 0 for every j ∈ V \8i109 and xe = 0 for
every e ∈ �4i5.

The first rule is based on the fact that a user will
not be assigned to a hub with the highest assignment
cost because there are at least three hubs in a feasi-
ble solution. The second rule is a well-known one for
variable fixing and uses the reduced cost information
(see, e.g., Wolsey 1998). A feasible solution is neces-
sary to apply this rule, and clearly better feasible solu-
tions will possibly allow more fixing. Rule 3 uses the
fact that the local access network design problem, i.e.,
the problem of assigning the users to hubs, is trivial
when the hubs are known. Users are assigned to hubs
with the least assignment costs. According to rule 3,
if we know the locations of at least two hubs, then we
can find two open hubs that offer the least cost and
conclude that a node will not be assigned to another
hub with a higher assignment cost. The first three
rules are based on optimality conditions; however, the
remaining ones, rules 4–7, are based on the conflict
constraints. Actually, they are implied by the formula-
tion. However, as we explain next, we do not include
all conflict inequalities in the subproblems. Therefore,
with these rules we can fix some variables before cor-
responding constraints are added to the model.

The first fixing rule is applied once at the beginning
of the algorithm. Rule 2 is used at each step after solv-
ing a subproblem, and we keep applying rules 3–7
until we cannot fix a new variable.

Variable fixing provides several advantages. The
first is the reduction of the size of the model. The
second is that we can identify some constraints that
become redundant after fixing a particular variable.
Let S ⊂ V \809 be a node set, and i ∈ S. Clearly, S and i
define a cut inequality. Note that for every j ∈ S\8i9
there is another cut inequality defined by S and j .
So there are �S� cut inequalities that are induced by
the same node set, and a feasible solution must sat-
isfy all of them. Now suppose that the variable ti is
fixed to 1 during the solution algorithm. Clearly, the
cut inequalities involving S are not required anymore
as x4�4S55 ≥ 2 becomes valid. All the cut inequalities
associated with set S that were added until this point
can be removed.
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Karaşan et al.: Survivability in Hierarchical Telecommunications Networks Under Dual Homing
INFORMS Journal on Computing 26(1), pp. 1–15, © 2014 INFORMS 11

In the next section, we present the results of a com-
putational experiment to investigate the effect of vari-
able fixing.

6. Branch-and-Cut Algorithm and
Computational Results

We present a branch-and-cut algorithm that uses the
valid inequalities, the separation algorithms, and the
variable fixing rules described in §§3–5. We imple-
mented our algorithm in C++ using Concert Technol-
ogy 29 as the framework and CPLEX 12.1 as the LP
solver. The computational analysis is performed on a
workstation with 2.66 GHz Xeon processor and 8 GB
of memory. We use the default strategies of CPLEX in
searching the branch-and-cut tree. Tailing off control
is used; we branch if the improvement in the objective
function value is small in 10 subsequent iterations.

A construction heuristic is used to find an initial
solution at the beginning of the algorithm. We start
from node 0 and apply the nearest-neighbor trav-
eling salesman problem (TSP) heuristic to obtain a
cycle that includes all nodes of the graph. Because
a cycle is two-edge connected, it is a feasible solu-
tion. Throughout the branch-and-cut algorithm, we
also use an LP-based heuristic. The edges are ranked
in a nonincreasing order of their xe values in the frac-
tional solution. We start with an empty set and add
the edges one by one until we obtain a two-edge-
connected subgraph.

As done by Labbé et al. (2004) and Fouilhoux
et al. (2012), we generate our test problems using TSP
instances from TSPLIB 2.1 (Reinelt 1991). The num-
ber in the name of the instance is the number of
nodes. We compute the costs of installing backbone
and access links as cij = ��lij� and dij = �410 −�5lij�/2,
where lij denotes the distance between nodes i and j
in the TSPLIB instances and � ∈ 831517199. We set
dii = 0 for all i ∈ V \809. We note here that as �
decreases, access link costs increase, whereas back-
bone link costs decrease and 2ECDHP gets closer to
the two-edge-connected subgraph problem.

6.1. Results for Small Instances
First, we solve our original formulation using a
branch-and-cut algorithm and report the results for
small size problems (up to 105 nodes). Because our
formulation has a large number of constraints, we
start our branch-and-cut algorithm by solving the fol-
lowing relaxed linear program:

min
{

∑

e∈E

cexe +
∑

4i1 j5∈A

dijyij +
∑

i∈V \809

diiti

}

s.t. 2ti +
∑

j∈V \8i9

yij = 2 ∀ i ∈ V \8091

xe + yi0 ≤ 1 ∀ i ∈ V \8091 e = 8i1091

xe ≤ ti ∀i ∈ V \8091 e = 8i1091

x4�4i55≥ 2ti ∀ i ∈ V \8091

x4�4055≥ 21

x4�4801 i955≥ 2 ∀ i ∈ V \8091

0 ≤ xe ≤ 1 ∀ e ∈ E1

0 ≤ yij ≤ 1 ∀ 4i1 j5 ∈A1

0 ≤ ti ≤ 1 ∀ 4i5 ∈ V \8090

A solution 4x̄1 ȳ1 t̄5 of this initial subproblem is fea-
sible for 2ECDHP if it satisfies the relaxed conflict
constraints (3), cut inequalities (6), and the integrality
constraints (7)–(9). The cut inequalities are separated
as explained in §4. The conflict constraints are sepa-
rated by enumeration.

The results are reported in Table 1. Here, the first
two columns give the name of the instance and the
� value. We report the percentage root gap, the num-
ber of branch-and-cut nodes explored, and the CPU
time in seconds in the columns “Gap,” “Nodes,” and
“CPU,” respectively. Finally, in columns “No conflict”
and “No cut,” we report the number of conflict con-
straints and the number of cut inequalities that are
added in the course of the algorithm.

We observe that the LP relaxations give strong
bounds, and not many nodes are enumerated in
the branch-and-cut tree. The largest gap is 1.53%,
and 402 nodes are enumerated for the corresponding
instances. Two instances are solved at the root node
without branching. All problems are solved to opti-
mality in less than five minutes.

We also observe that even though the root gaps are
higher with smaller � values, the CPU times tend to
increase as � increases. More conflict constraints are
added for larger � values. This is expected because as
� increases, fewer nodes are chosen as hubs.

These results are further improved by incorporat-
ing the variable fixing scheme explained in §5. The
results are reported in the last two columns of Table
1. Here the “Fix rate” refers to the percentage of the
number of variables fixed, and “CPU imp” refers to
the percentage improvement in the CPU time due to
variable fixing. We observe that variable fixing has
improved the computation times for all instances con-
sidered. The smallest improvement is 1.4%, whereas
the largest improvement is 95.1%. In general, more
variables are fixed for small � values. Also, the effect
of fixing variables is higher for smaller values of �.
For the instance KroA100, 71.6% of variables are fixed,
and this results in an improvement of 86.3% in the
CPU time when � is 3. On the other hand, when �
is 9, the fix rate is 93.9% but the improvement in the
CPU time is only 28.7%. The average fix rate is 50.3%,
and the average improvement in the CPU times is
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Table 1 Results of the Branch-and-Cut Algorithm with Conflict Constraints and Cut Inequalities for Small Instances

Instance � Gap Nodes CPU No conflict No cut Fix rate CPU imp

eil101 3 0024 5 6 10 389 8706 8901
eil101 5 0002 2 22 156 11167 9905 9501
eil101 7 0072 103 110 597 21865 302 104
eil101 9 0006 3 79 11755 11857 8701 5201
gr96 3 1013 128 14 51 11247 7902 9008
gr96 5 0085 82 27 177 21475 5008 8107
gr96 7 0043 13 27 455 11282 1007 2805
gr96 9 0027 11 159 11507 21106 6801 4009
kroA100 3 1053 402 16 45 869 7106 8603
kroA100 5 0087 79 6 164 429 7605 7209
kroA100 7 0026 18 12 445 748 1902 1306
kroA100 9 0001 2 61 11525 11800 9309 2807
kroB100 3 1002 63 11 32 697 6205 8105
kroB100 5 0087 243 61 173 31613 3504 6706
kroB100 7 0009 8 25 466 11308 1003 3401
kroB100 9 0028 19 232 11657 21003 1709 4203
kroC100 3 1033 92 15 52 11162 6902 7706
kroC100 5 1009 76 26 166 11878 3707 7305
kroC100 7 0028 16 21 467 11334 3303 4304
kroC100 9 0000 1 50 11466 11671 1008 3005
kroD100 3 0072 18 15 38 926 7308 8808
kroD100 5 0009 4 13 161 968 8807 8700
kroD100 7 0021 15 26 469 11312 301 605
kroD100 9 0026 11 142 11514 21194 2405 204
kroE100 3 0056 39 5 48 791 8903 8709
kroE100 5 0096 76 73 174 51867 4700 7606
kroE100 7 0008 3 16 466 848 1702 4204
kroE100 9 0092 41 262 11552 21897 2508 604
lin105 3 0006 2 11 56 777 9300 9003
lin105 5 0009 3 5 160 471 6107 7105
lin105 7 0000 1 25 447 11743 9908 7604
lin105 9 0005 2 109 11666 21334 1901 900
rat99 3 0041 13 8 12 536 7405 9007
rat99 5 0021 27 23 169 11525 3206 8108
rat99 7 0011 11 38 539 11894 2204 4302
rat99 9 0020 10 206 11702 21646 1309 1805

55.9%. Based on these results, we decided to use vari-
able fixing for larger instances.

6.2. Results for Large Instances and the
Effect of Valid Inequalities

In this experiment, we investigate the effect of adding
valid inequalities. Here, we use larger instances;
we solve 20 instances where the number of nodes
ranges from 150 to 198. In Table 2, we report the
results obtained by solving the original formulation
using variable fixing.

All instances are solved to optimality in less than
2.5 hours. The largest gap is 1.5%. As in the case of
small instances, here we also observe that in most
cases the CPU times and the number of conflict con-
straints added increase and the fix rate decreases as �
increases.

In Table 3, we report the results with valid inequal-
ities. In our preliminary experiment, we observed

that the in-cut inequalities are not effective in the
solution of our problem. Therefore we do not include
the in-cut inequalities in this analysis. In Table 3
column “Dual-homing ineqs,” we report the results
obtained when dual-homing inequalities are used
together with the conflict constraints and the cut-
inequalities. The results under the heading “Out-cut
ineqs” are obtained when out-cut inequalities are also
incorporated over dual-homing inequalities. Finally,
we also use the extended F -partition inequalities
together with dual-homing and out-cut inequalities
and give the results in the columns under “Extended
F -partition ineqs.” The best values are shown in bold.

The dual-homing inequalities are separated
using enumeration, and the out-cut and extended
F -partition inequalities are separated using the algo-
rithms given in §4. The separation procedures for
different classes of inequalities are performed in the
following order: conflict, cut, dual homing, out-cut,
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Table 2 Results of the Branch-and-Cut Algorithm with Conflict
Constraints and Cut Inequalities for Larger Instances

Instance � Gap Nodes CPU No conflict No cut Fix rate

kroA150 3 0085 494 10 59 11701 7902
kroA150 5 0042 85 19 262 21004 4604
kroA150 7 0030 18 72 694 11979 1309
kroA150 9 0007 7 541 21193 31693 2204
kroB150 3 1026 11061 37 90 21362 5304
kroB150 5 1050 171888 11862 322 81213 3000
kroB150 7 0013 4 36 742 31331 4803
kroB150 9 0019 18 712 21347 41353 1705
pr152 3 0064 104 12 82 21132 8408
pr152 5 0071 11084 144 298 31995 4001
pr152 7 1007 221550 21778 793 41132 905
pr152 9 0047 924 61774 21330 61651 603
u159 3 0037 51 5 50 11195 7909
u159 5 0034 62 37 259 81130 7009
u159 7 0022 19 92 770 31348 1603
u159 9 0035 184 11553 21493 51622 2008
d198 3 0043 554 154 44 41835 4705
d198 5 0010 20 212 343 101887 3702
d198 7 0022 503 11311 11080 91589 1809
d198 9 0006 54 81522 31320 151857 207

and extended F -partition. At most, 200 cuts are added
at an iteration. Out-cut inequalities are separated if
no conflict constraints or cut inequalities are added.

We observe that the dual-homing inequalities are
not very useful when � = 3. We recall that these
are the instances where all nodes become hubs at
optimality. For larger � values, the LP bounds are
improved significantly, and one instance is solved to
optimality at the root node. In general, the number

Table 3 Effect of Adding Valid Inequalities for Larger Instances

Dual-homing ineqs Out-cut ineqs Extended F -partition ineqs

Instance � Gap Nodes CPU Gap Nodes CPU Gap Nodes CPU

kroA150 3 0085 489 10 0085 489 10 0051 74 8
kroA150 5 0042 64 9 0042 64 9 0000 2 8
kroA150 7 0016 2 49 0015 8 54 0008 2 54
kroA150 9 0003 2 495 0000 1 408 0000 1 408
kroB150 3 1026 11002 37 1026 11002 38 0082 95 8
kroB150 5 1037 171045 21822 1037 171045 21789 0083 797 232
kroB150 7 0000 1 22 0000 1 22 0000 1 15
kroB150 9 0014 12 910 0000 1 458 0000 1 573
pr152 3 0064 116 12 0064 116 13 0060 164 11
pr152 5 0061 242 71 0061 242 71 0052 265 46
pr152 7 0093 41431 11923 0090 71061 21863 0081 11411 11137
pr152 9 0040 478 41593 0011 7 61429 0011 4 61219
u159 3 0037 46 8 0037 46 8 0020 3 4
u159 5 0031 37 56 0031 37 55 0000 1 14
u159 7 0010 9 59 0004 2 45 0000 3 51
u159 9 0034 161 11787 0011 35 11413 0011 15 11219
d198 3 0043 470 118 0043 470 120 0028 63 106
d198 5 0009 20 11758 0009 20 11759 0000 1 706
d198 7 0010 205 11434 0009 59 785 0008 88 829
d198 9 0002 15 51629 0000 1 31510 0000 1 31622

of explored branch-and-cut nodes also decreases. The
results are mixed for computation times; we observe
significant improvements for 10 instances, whereas in
8 instances the CPU times increase. In the remaining
two instances, the changes are minimal.

After adding the out-cut inequalities, the CPU times
improved significantly for six instances, whereas in
three instances we obtained worse results. In the
remaining 11 instances the differences are not sig-
nificant. No out-cut inequalities are added for the
instances with � equal to 3 and 5. The out-cut inequal-
ities are useful for improving the LP relaxation val-
ues especially when � = 9. Three more instances are
solved to optimality without branching by using the
out-cut inequalities. The number of branch-and-cut
nodes also decreased in general; however, in two
instances this number increased.

Finally, we observe that the extended F -partition
inequalities significantly improve the LP relaxation
bounds and the solution times. Although the num-
ber of branch-and-cut nodes also decreased in most of
the instances, there are significant increases in some
instances. Two more instances are solved to optimal-
ity without branching.

We note that the time spent in separation is
insignificant compared to the total computation time.
We observed that more dual-homing inequalities are
added for larger � values, especially for � = 7.
The number of out-cut inequalities tends to increase,
whereas the number of extended F -partition inequal-
ities tends to decrease as � increases.

Overall, in all instances except one, the solution
times reduced, showing that the addition of valid
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inequalities improves the performance of the branch-
and-cut algorithm. In instance d198 with � equal
to 5, the CPU time increased by 233%, but the prob-
lem is solved at the root node. Overall, six problems
are solved without branching when valid inequalities
are used, and significant savings in the computation
times are obtained for the other problems. In partic-
ular, the instance with the longest computation time,
d198 with �= 9, is solved in one hour instead of more
than two hours. Another difficult instance, pr152 with
� = 9, still requires 6,219 seconds, and the improve-
ment in the CPU time is approximately 8%. However,
the number of nodes decreases from 924 to 4 after the
addition of valid inequalities. The average improve-
ments in the number of nodes and in the CPU times
are 82.9% and 27.8%, respectively.

7. Conclusion
We analyzed a hierarchical network design prob-
lem with survivability requirements in both levels
of the design. The resulting design has an access
network that meets the two-edge-connected back-
bone network in a dual-homing manner and thus
the network is wholly protected against single link
failures. This work extends the literature because it
tackles survivability and design in both levels of the
network in an exact manner. To this end, we pro-
posed two formulations and compared them in terms
of the LP relaxation bounds and the difficulty of the
separation problems associated with their cut inequal-
ities. We performed a polyhedral analysis based on
the small size formulation and proposed exact and
heuristic separation algorithms for the valid inequal-
ities. To improve the performance of the branch-and-
cut algorithm, we developed several variable fixing
rules. The effect of the valid inequalities and the vari-
able fixing rules were tested on a range of problem
instances involving nearly 200 nodes. The computa-
tional analysis depicted that the valid inequalities and
the variable fixing rules have significantly improved
the performance of the proposed algorithm.

In our study, the terminal nodes can communi-
cate with each other only through direct connec-
tions with the hub nodes. In some applications, it
is feasible to communicate through other terminal
nodes as well. The ring/ring designs are examples of
such networks. One potential future research direc-
tion could be the study of access networks differ-
ent from star topologies. An interesting hierarchical
network that generalizes ring/ring designs is a two-
edge-connected/two-edge-connected network.

In some applications, technological limitations may
bound the maximum number of hops a signal can
traverse in the network. Thus, limiting the diameter
of the resulting networks even in case edge failures

could lead to more realistic and applicable designs.
A study that has a similar flavor is that of Baldacci
et al. (2007). They consider the design of a collection
of rings satisfying certain limitations, one of which is
an upper bound on the number of hub and terminal
nodes being served by each ring.

Another interesting line of extension may be to con-
sider capacity installations for demand routing in the
existing survivable networks.

Finally, a further extension line of research could be
the consideration of Steiner nodes in the designs.

The models as well as the valid inequalities
developed and used in this paper can potentially
be extended to answer the noted technological
restrictions.
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