8 research outputs found

    Strong amplitude-phase coupling in submonolayer quantum dots

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 109, 201102 (2016) and may be found at https://doi.org/10.1063/1.4967833.Submonolayer quantum dots promise to combine the beneficial features of zero- and two-dimensional carrier confinement. To explore their potential with respect to all-optical signal processing, we investigate the amplitude-phase coupling (α-parameter) in semiconductor optical amplifiers based on InAs/GaAs submonolayer quantum dots in ultrafast pump-probe experiments. Lateral coupling provides an efficient carrier reservoir and gives rise to a large α-parameter. Combined with a high modal gain and an ultrafast gain recovery, this makes the submonolayer quantum dots an attractive gain medium for nonlinear optical signal processing

    Time-resolved amplified spontaneous emission in quantum dots

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 97, 251106 (2010) and may be found at https://doi.org/10.1063/1.3529447.In time-resolved experiments at InGaAs/GaAs quantum-dots-in-a-well (DWELL) semiconductor optical amplifiers, pump-probe of the ground state (GS) population, and complementary measurement of the amplified spontaneous emission of the excited state (ES) population, we are able to separate the early subpicosecond dephasing dynamics from the later picosecond population relaxation dynamics. We observe a 10 ps delay between the nonlinear GS pulse amplification and the subsequent ES population drop-off that supports the dominance of a direct two dimensional reservoir-GS capture relaxation path in electrically pumped quantum-dot-DWELL structures.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Gain dynamics of quantum dot devices for dual-state operation

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 104, 261108 (2014) and may be found at https://doi.org/10.1063/1.4885383.Ground state gain dynamics of In(Ga)As-quantum dot excited state lasers are investigated via single-color ultrafast pump-probe spectroscopy below and above lasing threshold. Two-color pump-probe experiments are used to localize lasing and non-lasing quantum dots within the inhomogeneously broadened ground state. Single-color results yield similar gain recovery rates of the ground state for lasing and non-lasing quantum dots decreasing from 6 ps to 2 ps with increasing injection current. We find that ground state gain dynamics are influenced solely by the injection current and unaffected by laser operation of the excited state. This independence is promising for dual-state operation schemes in quantum dot based optoelectronic devices.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 107, 201102 (2015) and may be found at https://doi.org/10.1063/1.4935792.Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeDFG, 87159868, GRK 1558: Kollektive Dynamik im Nichtgleichgewicht: in kondensierter Materie und biologischen Systeme
    corecore