27,339 research outputs found
Semiclassical Accuracy in Phase Space for Regular and Chaotic Dynamics
A phase-space semiclassical approximation valid to at short times
is used to compare semiclassical accuracy for long-time and stationary
observables in chaotic, stable, and mixed systems. Given the same level of
semiclassical accuracy for the short time behavior, the squared semiclassical
error in the chaotic system grows linearly in time, in contrast with quadratic
growth in the classically stable system. In the chaotic system, the relative
squared error at the Heisenberg time scales linearly with ,
allowing for unambiguous semiclassical determination of the eigenvalues and
wave functions in the high-energy limit, while in the stable case the
eigenvalue error always remains of the order of a mean level spacing. For a
mixed classical phase space, eigenvalues associated with the chaotic sea can be
semiclassically computed with greater accuracy than the ones associated with
stable islands.Comment: 9 pages, 6 figures; to appear in Physical Review
Focusing in Multiwell Potentials: Applications to Ion Channels
We investigate out of equilibrium stationary distributions induced by a
stochastic dichotomous noise on double and multi-well models for ion channels.
Ion-channel dynamics is analyzed both through over-damped Langevin equations
and master equations. As a consequence of the external stochastic noise, we
prove a non trivial focusing effect, namely the probability distribution is
concentrated only on one state of the multi-well model. We also show that this
focusing effect, which occurs at physiological conditions, cannot be predicted
by a simple master equation approach.Comment: 8 pages, 7 figure
Localization of Eigenfunctions in the Stadium Billiard
We present a systematic survey of scarring and symmetry effects in the
stadium billiard. The localization of individual eigenfunctions in Husimi phase
space is studied first, and it is demonstrated that on average there is more
localization than can be accounted for on the basis of random-matrix theory,
even after removal of bouncing-ball states and visible scars. A major point of
the paper is that symmetry considerations, including parity and time-reversal
symmetries, enter to influence the total amount of localization. The properties
of the local density of states spectrum are also investigated, as a function of
phase space location. Aside from the bouncing-ball region of phase space,
excess localization of the spectrum is found on short periodic orbits and along
certain symmetry-related lines; the origin of all these sources of localization
is discussed quantitatively and comparison is made with analytical predictions.
Scarring is observed to be present in all the energy ranges considered. In
light of these results the excess localization in individual eigenstates is
interpreted as being primarily due to symmetry effects; another source of
excess localization, scarring by multiple unstable periodic orbits, is smaller
by a factor of .Comment: 31 pages, including 10 figure
Inequalities for low-energy symmetric nuclear matter
Using effective field theory we prove inequalities for the correlations of
two-nucleon operators in low-energy symmetric nuclear matter. For physical
values of operator coefficients in the effective Lagrangian, the S = 1, I = 0
channel correlations must have the lowest energy and longest correlation length
in the two-nucleon sector. This result is valid at nonzero density and
temperature.Comment: 9 page
Laboratory simulation of rocket-borne D-region blunt probe flows
The flow of weakly ionized plasmas that is similar to the flow that occurs over rocket-borne blunt probes as they pass through the lower ionosphere has been simulated in a scaled laboratory environment, and electron collection D region blunt probe theories have been evaluated
Exotic Axions
We show that axion phenomenology may be significantly different than
conventionally assumed in theories which exhibit late phase transitions (below
the QCD scale). In such theories one can find multiple pseudoscalars with
axion-like couplings to matter, including a string scale axion, whose decay
constant far exceeds the conventional cosmological bound. Such theories have
several dark matter candidates.Comment: 5 pages, 1 figure, References adde
Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo
After activation, Langerhans cells (LC), a distinct subpopulation of epidermis-resident dendritic cells, migrate from skin to lymph nodes where they regulate the magnitude and quality of immune responses initiated by epicutaneously applied antigens. Modulation of LC-keratinocyte adhesion is likely to be central to regulation of LC migration. LC express high levels of epithelial cell adhesion molecule (EpCAM; CD326), a cell-surface protein that is characteristic of some epithelia and many carcinomas and that has been implicated in intercellular adhesion and metastasis. To gain insight into EpCAM function in a physiologic context in vivo, we generated conditional knockout mice with EpCAM-deficient LC and characterized them. Epidermis from these mice contained increased numbers of LC with normal levels of MHC and costimulatory molecules and T-cell-stimulatory activity in vitro. Migration of EpCAM-deficient LC from skin explants was inhibited, but chemotaxis of dissociated LC was not. Correspondingly, the ability of contact allergen-stimulated, EpCAM-deficient LC to exit epidermis in vivo was delayed, and strikingly fewer hapten-bearing LC subsequently accumulated in lymph nodes. Attenuated migration of EpCAM-deficient LC resulted in enhanced contact hypersensitivity responses as previously described in LC-deficient mice. Intravital microscopy revealed reduced translocation and dendrite motility in EpCAM-deficient LC in vivo in contact allergen-treated mice. These results conclusively link EpCAM expression to LC motility/migration and LC migration to immune regulation. EpCAM appears to promote LC migration from epidermis by decreasing LC-keratinocyte adhesion and may modulate intercellular adhesion and cell movement within in epithelia during development and carcinogenesis in an analogous fashion
Charged and superconducting vortices in dense quark matter
Quark matter at astrophysical densities may contain stable vortices due to
the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue
that these vortices could be both charged and electrically superconducting.
Current carrying loops (vortons) could be long lived and play a role in the
magnetic and transport properties of this matter. We provide a scenario for
vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2
is correcte
Lepton flavour violation in The Little Higgs model
Little Higgs models with T-parity have a new source of lepton flavour
violation. In this paper we consider the anomalous magnetic moment of the muon
\gmtwo and the lepton flavour violating decays \mutoeg and \tautomug in Little
Higgs model with T-parity \cite{Goyal:2006vq}. Our results shows that present
experimental constraints of \mutoeg is much more useful to constrain the new
sources of flavour violation which are present in T-parity models.Comment: LaTeX file with 13 eps figures (included
- …