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ABSTRACT
 

The flow of weakly ionized plasmas that is similar to the flow that
 

occurs over rocket-borne blunt probes as they pass through the lower
 

ionosphere has been simulated in a scaled laboratory environment, and
 

electron collection D-region blunt probe theories have been evaluated.
 

A scaled steady state plasma flow simulated the electron tempera­

-

tures (Te 'b 102 oK) and number densities (n rs102 cm 3) characteristic 

of the lower ionosphere (D-region). A glow discharge was used to
 

produce the source plasma; source electron temperatures and densities
 

were controlled by varying the electrode configuration. The test
 

section conditions were also controlled by relaxation of the plasma from 

the cross flow in the discharge chamber and through a baffle system. 

Subsonic (Mn = 0.3) and supersonic (M = 2.0) flows were produced. 

-
2 )
0.3, Rn u 10 2 , and Kn u 10
 
Equivalence of the flow parameters (Mn 


was reproduced by appropriately scaling both the neutral gas density and
 

probe diameter by two orders of magnitude.
 

The state of the plasma in the glow source and test section jet
 

was indicated from a Langmuir (collisionless) double probe response.
 

A scaled version of a rocket-borne blunt probe was also evaluated in
 

this controlled flow experiment. The various blunt probe theories for
 

particle collection were analyzed, and electron densities evaluated
 

from double Langmuir and scaled blunt probe data using these theories
 

were compared.with mixed results. The theory by Mitchell, Hale, Hoult
 

is felt to correctly describe the processes in the relatively thin per­

turbed layer adjacent to the probe surface that is dominant in ion
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collection. However, for electron collection, the theory proposed by
 

Lai appears to more correctly describe the particle motion and processes
 

-
occurring in the several perturbed layers adjacent to the blunt probe
 

surface, and indicated.number densities show better agreement with
 

those indicated by the double probe.
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CHAPTER I
 

INTRODUCTION
 

1.1 Discussion of Problem and Earlier Work
 

The D-region is the lower part of the ionosphere, located between
 

the lower thermosphere and upper stratosphere; it extends from about
 

40 km to 90 km above a standard sea-level reference. The chemical com­

position of the D-region is poorly understood because of its complex
 

structure and general inaccessibility for probing. This region of space
 

is too high for balloon studies and too low for orbital satellite
 

The use of rocket-borne probes has overcome the inaccessibility
research. 


problem, but it has introduced a new degree of difficulty because of the
 

need to interpret the response of the probes. Accordingly, the correct
 

interpretation of the response from rocket-borne probes is of fundamental
 

interest in trying to understand the chemical composition of the
 

D-region.
 

The properties of the D-region (1), presented in Table 1 include
 

values for the pressure, P, density, P, neutral concentration, n,
 

temperature, T, electron-neutral mean free path, e-n, ion-neutral, Ai-n'
 

The state of the medium
and neutral-neutral, n-n' mean free paths. 


in the D-region is specified by the electron Knudsen number, defined as
 

the ratio of the electron-neutral mean free path to the characteristic
 

A
probe size (Eq. 1.3.2); it is about 9 to 90 km and 8 x 1'
3 at 40 km. 

rocket-borne probe is typically on the order of 10 cm in diameter (fl=2r,)
P, p
 

and descends through the D-region while passing from a collisionless
 
>> 
(s-n rp) medium at 90 km to a collisional (s-n << rp) medium at
 

The D-region is weakly ionized with the deiree of ionization,
40 km. 




Table 1: The Properties of the D-Region 

ALT 

(km) 

P 

(Tort) 

P -3 
(g cm ) 

n_3 

(cm ) 
T 

(OK) 

xe-n 

(cm) 

1-n 

(cm) 

n-n 

(cm) 

40 

50 

60 

70 

80 

2.17 

6.0 x 10- 1 

1.5 x 10- I 

3.5 x 10-2 

6.77 x 10- 3 

3.43 x 10-6 

-1 -7 
9.93 x 10-7 

-1 -7 
2.66 x 10- 7 

7.45 x 10- 8 

1.54 x 10-9 

7.2 x 10 284 

~ 116-13-3 
2.0 x 10 271 

115-22 
5.7 x 10 253 

1.61 x 10 210 

3.24 x 10 197 

8.0 x 10-2 

3.2 x 10- 1 

1.2 

4.2 

2.0 x 101 

2.6 x 10-3 

6.7 x 10- 3 

2.0 x 10-2 

6.7 x 10­ 2 

4.5 x 10-

3.2 x 10-3 

8.2 x 10-3 

2.4 x 10-2 , 

8.2 x 10­ 2 

5.6 x 10- I 

90 1.25 x 10-3 2.96 x 10-9 6.4 x 10 185 9.0 x 10 1 1.6 2.0 
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defined approximately as the ratio of electron to neutral particle
 

- 9
concentration (6 = ne/n), varying from 10 to 10- 14 between 90 and
 

40 km, respectively. The Debye length, the characteristic electrostatic
 

shielding length scale (defined in Chapter V), is approximately 10 cm at
 

40 km and 3 cm at 90 km.
 

Sounding rockets are used to carry diagnostic probes into the
 

ionosphere where they are released; probes are flown in subsonic and
 

supersonic flight conditions. With the parachute system, the probes will
 

-i
 
descend subsonically with velocities of about 300 m sec at 90 km to
 

-
about 40 m sec 1 at 40 km (2); the average descending velocity is
 

-
100 m sec . Without a parachute drag system the probe's descending
 

flight is supersonic with a terminal Mach number of about 4 (3); the
 

probe's average flight Mach number is about 2.
 

The electrostatic blunt probe diagnostic was first used by Hale
 

and Hoult (4) to study the chemical composition of the D-region. These
 

probes were launched into the ionosphere and collected data in descent
 

from 90 km to 40 km. The probes moved subsonically with the aid of a
 

-i 
parachute drag system, having an average velocity of 100 m sec . Other 

similar types of particle collecting probes have been flown supersoni­

cally. Gerdien.condenser probes (5) recorded data that requires a
 

knowledge of the flow field and.shock wave characteristics for proper
 

interpretation. In supersonic flow, as a shock wave forms in front of
 

the probe, chemical effects on the electrically charged particles occur
 

in the flow region surrounding the probe. If further ionization is
 

caused by the shock, difficulties arise in trying to relate the recorded
 

data to the basic atmospheric data. There are no foolproof means of
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controlling the orientation of the supersonic probes, and this can
 

result in an alteration of the composition of the plasma in contact
 

with the probe'. Bordeau, et al. (6) suggested that for a more satis­

factory understanding of the data obtained from the supersonically
 

flown probes, an improved analysis would be required. Chung,-et al. (7)
 

have presented a review of available electric probe theories in flowing
 

plasmas. They also point out that ion and electron particle collection
 

in the ionosphere is an important use of such probes, and that there
 

have been many theories developed for the interpretation of data
 

received from rocket-borne probes. In the present work, comparison and
 

analysis of the various relevant probe theories, particularly for elec­

tron particle collection by subsonic, blunt probes, will be presented.
 

The Ionosphere Research Laboratory of The Pennsylvania State
 

University has recently (October 1971 to February 1972) launched 11
 

electrostatic blunt probes into the D-region of the ionosphere. Hale
 

(8) has pointed out that the interpretation of the electron data
 

obtained from these subsonically flown probes needs further in-depth
 

study. This thesis will explore laboratory experimental-analytical
 

aspects of blunt, subsonic probe behavior.
 

The experimental techniques associated with rocket-borne probes
 

are well established. The application of particle collection theory to
 

the data recorded by the probes, however, is required in order to
 

predict atmospheric properties. The probes are flown as a means of
 

obtaining number densities of the constituents in the particular region
 

being studied. The current collected by the probe in response to
 

applied voltage is scaled, transmitted, and catalogued. Appropriate
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equations with assumed averaged properties of the medium are applied
 

before the number densities are obtained. Burkhard (9) has suggested
 

that the use of hybrid computer techniques would alleviate the data
 

reduction problem by reducing the time required for reduction and by
 

providing an increase in accuracy that is lost in any hand reduction
 

process.
 

In order to study the response of probes for use in space, some
 

laboratory experiments involving flowing plasmas have been conducted
 

(10-18). The cylindrical Langmuir probe (10) has been widely used as
 

the primary diagnostic tool in collisionless plasma (Xs-n >> rp)
 

research. There is a major difference, however, between the use of
 

electrostatic probes for these collisionless plasma flow studies and
 

their use as lower ionosphere diagnostic probes. In the lower ionosphere,
 

rocket-borne electrostatic probes collect particles from a highly
 

collisional plasma (X r ) with an applied electric field operating
 

in a region of free diffusion. The electrostatic probe flows that have
 

been studied in laboratory plasmas serve to model reentry (hypersonic)
 

flows.that are highly ionized and have a large bias voltage so that they
 

are influenced by ambipolar diffusion, and the space charge field
 

(sheath) dominates the collection region. While such laboratory experi­

ments are a means for predicting the effects that the flow velocity of 

the plasma willhave on the response of one specific operating range for 

electrostatic probes, .to date there-has been no reported laboratory 

evaluation of electrostatic devices in flowing plasma that model D-region 

probe flows of interest here. 
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Research conducted on the response of electrostatic probes in
 

flowing plasmas has dealt with some of the effects of flow on electron
 

temperature and density, probe potential distribution, and plasma poten­

tial as related to ion and electron currents collected. Dunn and Lordi
 

(11) made electron temperature measurements with cylindrical Langmuir
 

probes in the collisionless (Xs-n >> rp) and transition (Xs-n rp)
 

regimes of a plasma produced in a shock tunnel. They found that the
 

deduced electron temperatures were independent of the probes radius and
 

end effects. Sonin (13) and Smetana and lachetta (14) found that in a
 

collisionless plasma the electron temperature indicated by cylindrical
 

Langmuir probes was independent of the probe's orientation with respect
 

to the flow velocity direction. More recently, Segall and Koopman (15)
 

have studied the flow effects on indicated electron temperature in a
 

laser produced collisionless plasma. Generally, they found that the
 

indicated value of electron temperature in flowing plasma was higher
 

than in the static plasma. From such results, it can be concluded that
 

the electron temperature as determined from standard techniques using
 

the slope of the logarithm of the electron current plotted as a function
 

of applied probe voltage, provides an upper limit on temperature
 

measured in a flowing plasma.
 

The effects of plasma flow on the indicated plasma potential was
 

considered by Heatly (16). He found that the plasma potential may not
 

be clearly recognized from the current-voltage characteristics. The
 

current conducted by the probe at the plasma potential will be greater
 

than the thermal current to the probe in the stationary plasma. Sonin
 

(13) considered what effects the orientation of the probe would have on
 



the indicated plasma potential. It was found that the plasma potential
 

as identified by a "knee" in the characteristic, is altered when the
 

positively biased probe's orientation is changed with respect to the
 

flow direction.
 

The potential distribution about the probe in a flowing collision­

less plasma was considered by Laframboise (17) and Heatly (16). Heatly
 

found that because of the imposed flow velocity, the effective cross
 

sectional area of the sheaih around a cylindrical probe is distorted
 

from a circular shape. However, if the probe is positioned perpendicu­

lar to the flow direction the sheath will have a bilateral symmetry
 

and the distortion of the potential field can be avoided. Heatly also
 

concluded that, in principle, the response from the probe can be treated
 

as if it were in a stationary plasma. More recently, Laframboise found
 

that if the cylindrical probe is positioned parallel with the flow
 

direction it will respond as if it were a stationary plasma when the
 

mean free paths of the species being collected are larger than the
 

probe's radius (17). 

Regarding saturation, Segall and Koopman (15) found that when using
 

cylindrical Langmuir probes, the electron current did not saturate. A
 

nearly linear increase in the probe current with applied voltage was
 

obtained, while the same probes did show saturation in the stationary
 

plasma. It was concluded that the shielding effect of the sheath is
 

lost due to the flow velocity. As a related observation, Tachetta and
 

Smetana (14) found that the electron current is independent of the
 

velocity of the plasma when the flow velocity is less than the particle
 

random speed.
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Jakubowski (18) and Sonin (12) both studied the effects that plasma
 

velocity has on the conducted ion current. It was found that the maxi­

mum ion current is conducted when the probe is positioned parallel with
 

the flow direction. As the orientation of the probe is changed with
 

respect to the flow direction, the ion current decreases.
 

The studies of electrostatic probes in flowing plasmas discussed
 

above 	give a general indication of the unresolved nature of the effects
 

of flow velocity on the response of electrostatic probes. Some specific
 

regimes of operation such as for collisionless particle collection, are
 

fairly 	well understood and this can aid in understanding the response of
 

lower 	ionosphere, collisional rocket-borne probes. The studies noted
 

have 	deart with strongly ionized plasmas and mostly with ion current
 

The intent of the present work is to provide an experimental
collection. 


verification of the response of electrostatic probes in a weakly ionized
 

flow as experienced by rocket-borne probes descending through the
 

highly collisional D-region of the ionosphere. Electron collection is
 

of primary interest, and is used to allow correct determination of
 

electron density from the response of the probes.
 

1.2 	 Objectives
 

In this work the flow over a D-region rocket-borne blunt probe
 

will be simulated in collisional, continuum regimes in a laboratory
 

experiment. Subsonic and supersonic flows are modeled in order to
 

simulate the probe's flight conditions through the D-region. The
 

D-region parameters are scaled to provide an alternative means of
 

It is
understanding the formation and dynamics of D-region probe flows. 
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one objective of this research to show that the response from the
 

rocket-borne blunt probe can be correctly evaluated in a controlled
 

D-region flow experiment.
 

The blunt probe theory was originally developed by Hale and
 

Hoult (4) for subsonic rocket-borne probes. Sonin (19) provided an
 

alternative interpretation and extended the theory to include super­

sonic probes. Both theories were based on the concept of particle
 

convection in the zero space charge limit. Until recently, these were
 

the only relevant theories which related the current conducted by the
 

ionospheric probes to the ambient charged particle density for blunt
 

probe flow. A new theory for electron collection has been outlined by
 

Lai (2). This theory is developed for subsonic blunt probes and is
 

based on a dominant mobility concept in the zero space charge limit.
 

Not one of the above theories for the operation of an electrostatic
 

blunt probe has been substantiated by controlled experimental results.
 

On that basis, the interpretation of D-region data from subsonic and
 

supersonically flown probes clearly needs further study. The present
 

work will help identify the appropriate theory for the interpretation
 

of blunt probe data by allowing comparison of appropriately determined
 

electron density and temperature of the plasma with that determined
 

from blunt probe data interpreted by each of these available theories
 

for parameter ranges appropriate for full-sized D-region rocket-borne
 

probes.
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1.3 Method of Investigation
 

To obtain a properly modeled experiment, some plasma and probe
 

properties were scaled by two orders of magnitude. The relevant flow
 

parameters include the Reynolds number, Knudsen number and Mach number.
 

The Reynolds number is given by
 

nmUD 
(1.3.1)
Rn = -1-1 

where n is the neutral concentration, m is the mass, U is the flow 

is the probe diameter, and i is the viscosity. The Knudsenvelocity, DP 

number is given by 

K (1.3.2) 
n nor 

p
 

where a is the collision cross section. The Mach number is given by
 

U (1.3.3) 
n (yRT)1/2
 

where y is the ratio of specific heats, R is the gas constant, and T is
 

the gas (heavy particle) temperature. In the D-region the Reynolds
 

number for a 10 cm diameter probe, descending subsonically, ranges from
 

about 4.1 at 90 km to 724 at 40-km, and about 110 at 90 km to
 

6.4 x 104 at 40 km for a supersonically descending probe. The electron­

- 3 at 40 km. The
Knudsen number varies from about 9 at 90 km to 8 x 10


Mach numbers are about 0.3 and 2 for the subsonic and supersonic flight
 

conditions, respectively, and were determined by using the average
 

descending velocities of the probe through the D-region.
 

Equivalence of the flow parameters was reproduced by scaling the
 

neutral concentration and probe diameter; the neutral density was
 

scaled up by two orders of magnitude while the probe diameter was
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scaled down by two orders of magnitude. By reproducing the correct
 

flow velocities and ambient temperature, the D-region flow parameters
 

were reproduced. Without this scaling, an excessive volume flow rate
 
3 -l 

of about 4 m3sec would be required by a pumping system for full scale 

models. It was, therefore, desirable to scale the experiment by reduc­

ing the physical size while retaining the order of magnitude of the flow 

parameters. 

A glow discharge (20) was used to produce a weakly ionized plasma. 

The glow discharge is characterized by a gas (heavy particle) tempera­

ture on the order of 300 0K and an electron density on the order of 

8- -3
-
10 cm . The degree of ionization in a glow discharge is on the order 

of 10-14 . The proper D-region electron temperature and density was 

achieved by allowing the discharge to flow through baffles, into a 

nozzle, and into the test chamber. The ionization in the plasma enter­

ing the test chamber was controlled by the baffle system which lengthens 

the path of the flow, allowing electron temperature and density to
 

relax to desired values. The plasma source was controlled by varying
 

the electrode configuration and power levels.
 

An impact pressure probe (21) was used to obtain impact pressure
 

measurements at the exit of the nozzles. These measurements describe
 

the characteristics'6f the flow field in the discharge jet.
 

The cylindrical Langmuir probe (10) has been widely used to
 

obtain electron temperatures and particle number densities in colli­

sionless laboratory plasmas. This type of probe consists of one or
 

more metallic electrodes with a large aspect ratio, D -1, which when
 
p 

inserted into a plasma and biased relative to it, enables the local
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properties of the plasma to be accurately determined when operated in
 

Because the theory of its operation and the
the collisionless regime. 


procedure for its use are well understood (22), it was used in this
 

work to accurately establish the plasma characteristics in the test jet.
 

A scaled version of Hale's rocket-borne blunt probe (23) was also
 

used to obtain standard current-voltage data indicative of the electron
 

The data from the scaled
temperature and particle number densities. 


blunt probe will be correlated with the data from the actual rocket-


The validity of the plasma properties deduced
borne D-region probe. 


from rocket-borne data will be determined by a comparison of the magni­

tudes of the exact plasma number densities and temperatures with those
 

determined from the various techniques using the current-voltage char­

acteristics in the laboratory experiment.
 



i 

CHAPTER II 

EXPERIMENTAL APPARATUS AND TEST CONDITIONS 

2.1 Flow Scaling 

The reproduction in the laboratory experiment of the flow about a 

descending D-region bltnt probe requires the viscous (Rn), compressi­

bility (Mn), and rarefraction (Kn ) parameters to equal those in the 

ionosphere. The mass flow rate through the internal flow system must 

be controlled to produce the desired flow conditions over the scaled 

probe in the laboratory system, ag 

= 0.785 nmUD (2.1.1)
 

where m is the mass of the average gas particles. Excessive mass flow
 

rates on the order of 8 gsec would be required for a full-size model
 

to be tested. By reducing the geometric size of the experiment, large
 

reductions of mass and vblume flow rate can be achieved because
 

2
 
nD* A reduction in size by one order of magnitude along with an
 

increase in density by one order of magnitude, results in a lower mass
 

flow rate of one order of magnitude, while the volume flow rate, V,
 

required by the pumping system is reduced by two orders of magnitude,
 

as 

V = 0.785 UD2 (2.1.2) 

Since Kn' (nDp)- and Rn u nDp , similarity of test and flight parame­

ters is insured when the flow velocities, temperatures, and the product
 

-
n x DP (cm
2) is the same in the actual and scaled flows. In this
 

experiment the blunt probe diameter was reduced from 10 cm to 0.1 cm,
 

and the gas density was scaled up by two orders of magnitude. This
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scaling resulted in lower mass flow rates by two orders of magnitude
 

and a reduction in the steady state volume flow rate by four orders of
 

magnitude.
 

2.2 Apparatus and Evaluation of Alternative Plasma Sources
 

2.2.1 Introduction - Electrical Discharge and Test Chamber
 

In order to simulate the weak ionosphere plasma, the production
 

of a low temperature and low density plasma was needed in this experi­

ment. 
Various electrical discharge configurations for obtaining a low
 

temperature and density plasma were tested before the glow discharge
 

source with cross flow was established as the appropriate plasma source.
 

The temperature and number density of charged particles was controlled
 

by the geometry of the electrodes and a baffle system for the flow.
 

The alternative techniques considered will be discussed in section
 

2.2.4.
 

A glow discharge is produced by the conduction of low-level
 

current (mA) through a low density (mT) gas. The discharge is generally
 

comprised of interelectrode regions, dark spaces, and a uniform posi­

tive column. The transport of electrons and ions in the gas are the
 

primary processes which maintain the discharge. Ionization, excita­

tion, recombination, attachment and dissociation, and the absorption
 

and emission of photons are the processes which are involved in the
 

total physical phenomena of the self-maintained glow discharge (20).
 

In the laboratory experiment, electrostatic probe measurements in
 

the stationary glow configuration were made in the postive column. The
 

positive column is characterized by a low gas (heavy particle) tempera­

ture on the order of 300 0K and an electron density on the order of
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- 3
108 cm . This region of discharge extends from the Faraday dark space
 

near the cathode to the anode glow. It is a quasi-neutral plasma
 

(ni = ne) which has been studied by standard Langmuir probe techniques
 

(24).
 

In general, in the discharge configuration with cross-flow super­

imposed, no such definable regions occured in the glow discharge. The
 

electron concentrations in each definable static region were found to
 

be mixed together. As the resulting ionized flow progressed from the
 

discharge chamber into a baffle and accelerating nozzle, the concen­

tration of electrons was also altered by the processes of diffusion to
 

the walls and recombination. The control of the-electron density was
 

achieved by the geometry of the electrodes and the baffle system. The
 

specific electrode configuration will be discussed in section 2.2.4
 

and the baffle system will bd discussed in sections 2.3 and 2.4.
 

The circuit for the glow discharge'is shown in Figure 2.1. It is
 

comprised of a variable DC power supply and load resistor. As will be
 

established in section 2.2.4, 28 mA was chosen as the appropriate
 

working discharge current. The compatible voltage applied to the
 

system was found to be a function of the operating pressure in the
 

flow; it varied from 500 V to 1500 V. A 1000 Q, 200 W load resistor
 

was used in series with the power supply to insure a stable discharge
 

(24).
 

Figure 2.2 presents a schematic of the experimental facility: glow
 

discharge chamber, traversing mechanism, and test chamber. The test
 

chamber was a standard 15 cm internal diameter pyrex cross. The dis­

charge chamber was initially designed so that various types of plasma
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Figure 2.1 Glow Discharge Circuit
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sources could be emplaced in the pressure-isolated discharge chamber.
 

The rectangular discharge chamber was fabricated from plexiglass, as
 

low temperature plasma sources were originally envisioned; the electri­

cal discharge was along a lateral axis and the neutral gas flowed along
 

a longitudinal axis. A steady state flow system was developed. After
 

ionization by the glow discharge, the gas was accelerated by a fitted
 

subsonic or supersonic nozzle which allowed flow into the test chamber,
 

which had a fixed pressure. The test station was located at the exit
 

plane of the nozzle.
 

The traversing mechanism enabled the diagnostic probes to be
 

moved with considerable precision across and along the discharge jet.
 

It was made primarily of plexiglass components and was supported by
 

two side plates in the test chamber cross-arms. An integral precision
 

micrometer allowed accurate positioning of the probes across the dis­

charge jet to within 0.01 mm.
 

The low density plasma jet streaming from the exhaust nozzles,
 

flowed into the test chamber; probes were positioned in an axial
 

orientation. The end plates of the test chamber were made of plexi­

glass. The aft end plate supported the glow discharge chamber. The
 

forward end plate was used for electrical and pressure connections.
 

The side plates also supported the 5 cm diameter vacuum pumping inlet.
 

2.2.2 Pumping System and Pressure Measuring Instruments
 

The low density, steady state volume flow rates were achieved by
 

3
a tandem connection of two Welch 1397B (8.5 x 10- m3sec- ) mechanical
 

pumps at a 5 cm internal diameter "T" junction. They were 6perated
 

simultaneously and controlled through a common gate valve. The test
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chamber was connected to the pumping system by heavy rubber tubing with
 

a 5 cm internal diameter. The rubber tubing was connected to a cold
 

trap which was mounted on the gate valve and pumps. This configuration
 

is shown in Figure 2.3. Rubber tubing was also used to connect the
 

pumps to the common linkage on the gate valve. This prevented vibra­

tions associated with the vacuum pumps from being transmitted tO the
 

test chamber.
 

Two types of gauges were used for static pressure measurement. A
 

Pirani vacuum gauge (0 to 2 Torr) was used for the scaled lower pressure
 

range (0.09 to 0.16 Torr, 99 km)and a Wallace and Tiernan gauge (0 to
 

50 Totr,) for the scaled higher pressure range (0.4 to 4 Torr, 70 km and
 

80 km). The Pirani gauge is a thermal conductivity vacuum-instrument.
 

The Wallace and Tiernan is a mechanical vacuum gauge. Both of these
 

give direct pressure indications. They were calibrated with a McLeod
 

mercury manometer. The connecting arrangement for these pressure
 

instruments is also shown in Figure 2.3.
 

Impact pressure measurements in the discharge jet were made with
 

a standard right circular cylinder impact probe; this instrument will
 

be discussed in section 3.1. In the subsonic flow configuration, the
 

impact probe was connected to a Granville-Phillips capacitance manometer.
 

This manometer is a differential pressure instrument of high sensitivity;
 

it gave pressure readings relative to the reference static pressure in
 

the test chamber to within 0.001 mm Hg. In the supersonic flow con­

figuration, 
the impact pressure probe was connected to a Cole-Parmer
 

micrometric mercury manometer. 
This instrument also gave differential
 

pressure readings; it was sensitive to within 0.05 mm Hg.
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Figure 2.3 Pumping and Pressure Measuring System for Experimental Facility
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The impact probe was also connected to a supplementary Welch 1400
 

4 3
(3.5 x 10- m se -1 ) mechanical pump to help evacuate the impact probe
 

prior to initiating a given series of data runs. When the static pres­

sure in the probe and test chamber were equal the pump was closed,
 

allowing the probe to respond to the impact pressure from the discharge
 

jet. This arrangement is shown in Figure 2.4.
 

2.2.3 The Subsonic and Supersonic Nozzles
 

Both nozzles were designed for a constant volume flow rate of
 

1.8x 10-2 m3 -l
 
1.18 m sec . The ambient gas (heavy particle) temperature was 

maintained at room temperature (300
0 K) while the discharge pressure was
 

adjusted for a specific operating condition. The neutral gas entered
 

the discharge chamber through a choked orifice; the pumping system
 

induced the steady state flow through the system. The exit area of the
 

nozzles was determined by matching the mass flow rate entering the dis­

charge chamber with the mass flow rate entering the test chamber. The
 

continuity equation for this condition is,
 

(2.2.1)
po Uo A0 pE UE AE 


where A is the cross sectional area and the subscripts o and E denote
 

the entrance condition into the choked orifice and entrance condition
 

(jet exit) into the test chamber, respectively'. The predetermined
 

conditions entering the choked orifice (Po and T ) and the specified
 

scaled test conditions (PE' E' TE and UE ) enabled the exit areas of the
 

nozzles to be determined. From Eq. (2.2.1) and the perfect gas law
 

(P = pRT), the exit areas of the nozzles were determined by 
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=TEPE (2.2.2) 

where V = U A ,the constant volume flow rate.
 

The exit diameter of the subsonic nozzle was 1.2 cm and was
 

designed for the representative, average flow Mach number of a desend­

ing rocket-borne probe, Mn = 0.3. The nozzle was machined from plexi­n 

glass and polished smooth. The entrance of the nozzle was 3.18 cm
 

diameter. The subsonic nozzle was found to produce the expected flow
 

field and core region; this is further considered in section 4.2. The
 

nozzle profile is shown in Figure 2.5A.
 

An exit diameter of 6 mm for the supersonic nozzle was designed 

to produce a representative, average Mach number, Mnn = 2. The throat 

diameter was 4.3 mm. The supersonic nozzle was also machined from 

plexiglass and polished smooth. It was designed with a conical diverg­

ing section with a half angle of 10 degrees. The supersonic nozzle is 

shown in Figure 2.5B. The impact pressure profiles from the subsonic 

and supersonic nozzles will be discussed in Chapter IV. 

The external design of the nozzles permitted each to be inter­

changed easily for a specific test run. The nozzles were attached
 

through the nozzle plate which was fastened to the glow discharge
 

chamber.
 

2.2.4 Low Temperature Plasma Sources
 

Several electrical heating methods were tested before the glow
 

discharge techniques was accepted as the optimum plasma source for low
 

temperature and low number density plasma of ionosphere interest. The
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tests were conducted in the subsonic flow configuration. A double
 

Langmuir probe with 0.25 mm diameter tungsten filaments, discussed in
 

section 3.2, was used as the basic diagnostic tool for determining the
 

order of magnitude of the electron density and temperature in the
 

source plasma.
 

With simple, plane electrodes, shown in Figure 2.6A, and using a
 

5 mA discharge current, the electron temperature and number density range
 
were established to be on the order of 105K and 107 cm- 3 , respectively.
 

Electron temperatures and number densities were determined for various
 

values of discharge current by the logarithmic plot method described
 

by Johnson and Malter (25). A first variation examined the effects due
 

to an increase of the glow discharge current. By increasing the dis­

charge current from 5 mA to 30 mA, the order of magnitude of the
 

electron temperature decreased from 105K to 104K while the order of
 

7 -3 8 -3
the electron density increased from 10 cm to 10 cm . Persson (26), 

and Bunting and Heikkila (27) have used discharge currents of 28 mA to
 

achieve electron temperatures on the order of 102K. As a result of
 

their findings and the tests conducted, a discharge current of 28 mA
 

was chosen as the working glow discharge current. One and two cathode
 

systems were also compared. This arrangement of the cathode-anode
 

systems is also shown in:Figtire 2.6. The indicated electron tempera­

tures were found to be lower for the one cathode - one anode system.
 

The second variation evaluated the effects of a point anode and
 

plane cathode configuration, as shown in Figure 2.7. The glow dis­

charge is maintained by the flow of electrons emitted by the cathode
 

upon bombardment by ions from the anode. The point anode discharge
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system was developed to minimize the ion bombardment at the cathode for
 

a given discharge current. The anode was constructed from tungsten
 

wire, 0.25 mm in diameter and 6.35 mm long. The cathode was machined
 

from aluminum stock. It was 4.44 cm in diameter and 6.35 mm thick.
 

The resulting electron
The electrodes were separated by a 7.62 cm gap. 


temperature was found to be on the order of 10
4 .K.
 

A ring cathode and ring anode configuration was also tested to
 

determine if the electron temperature of the ionized flow could be
 

reduced by permitting the plasma to flow through the cathode. The
 

aluminum cathode with a hole through the axis was located at the
 

A brass anode was located opposite the cathode;
entrance of the nozzle. 


this is shown in Figure 2.8. Electron temperatures of order 10
4 .K
 

were obtained.
 

Because the electron temperatures were being reduced by only one
 

order of magnitude by these previously described techniques, alterna­

tive methods of producing a cool, weak plasma were considered. A
 

resistance heating technique (28) and a non-self-sustainiing discharge
 

technique (34) were tried in an attempt to produce a low temperature
 

plasma of order 102K.
 

Resistance heating is characterized by large currents (3-5 A-)
 

through a separate filament circuit and small voltages (6V). Three
 

variations of this technique were tested. The configurations are
 

shown in Figure 2.9. The first variation utilized a coiled tungsten
 

The coil was 6.35 mm in diameter
wire filament, 0.25 mm in diameter. 


and 7.62 cm long (30.5 cm uncoiled). The second variation utilized a
 

straight piece of tungsten wire, 0.25 mm in diameter and 7.62 cm long.
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The'third variation consisted of two pieces of 0.25 mm diameter tungsten
 

wire, also 7.62 cm long. Each of these filaments broke when the neces­

sary current level was maintained for extended periods of time ( 15 mirf.),
 

and current saturation as indicated by the Langmuir probe was not
 

achieved. This appears to be explainable,as the applied current to the
 

filaments constantly "boiled" off electrons;so as the applied positive
 

probe potential was increased, electrons were continually drawn to the
 

probe and therefore, the saturation level of the probe continually
 

increased. To eliminate this effect the non-self-sustaifling'discharge
 

was tested. This discharge is characterized by the emittance of
 

electrons due to irradiation (24). For a specific operating voltage,
 

all of the electrons emitted by the cathode are drawn to the anode.
 

Increasing the voltage beyond this operating point does not result in
 

further emittance. As the positive probe potential is increased, it
 

draws electrons-from a limited source and therefore, for a continual
 

increase in probe potential a saturation level should be reached.
 

Figure 2.10 shows the two variations of the non-self-sustaining
 

discharge technique that were tried. The first utilized a single loop
 

of tungsten wire, 0.25 mm in diameter and 1.9 cm long as an ionization
 

source for a high voltage anode. The second variation used the heater
 

filament from a power pentode 6BK5 (29), and a high voltage anode.
 

Both of these filaments also broke when the current was maintained for
 

a continuous heating period of approximately 15 minutes, but current
 

saturation could still not be achieved.
 

Since the resistance heating and non-self-sustaining discharge
 

techniques did not reduce the magnitude of the electron temperature, a
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brush electrode system (26) was designed in an attempt to achieve
 

current saturation and a lower electron temperature. Brush electrodes
 

are known for producing a well defined negative glow with electron
 

temperatures on the order of 10%K (26). One brush anode - one brush
 

cathode, and two brush cathodes - one ring anode arrangements were
 

tested. These configurations are shown in Figure 2.11. The brush
 

electrodes were constructed from 0.25 mm diameter tungsten wire fila­

ments, 1.6 cm long. Each brush electrode consisted of 50 tungsten
 

filaments which were epoxied to a stainless steel base plate, 1.9 cm in
 

diameter. A negative glow was obtained, extending out about three
 

cathode diameters from each cathode, but the discharge was erratic and
 

oscillatory. Because of the unstable nature of the discharge, current
 

measurements could not be taken and the technique was abandoned.
 

The flow heating experiment was returned to the original glow
 

di6charge configuration but with an alteration to smaller electrodes
 

insulated on all but the forward facing surfaces. The electrodes
 

were reduced to a 2.5 cm diameter. They were insulated with a 2.3 mm
 

layer of epoxy everywhere but their front surface and covered with
 

The plexiglass was used
plexiglass tubing, as shown in Figure 2.12A. 


to confine the plasma. The resulting discharge was stable but still
 

produced electron temperatures of order 10
40K.
 

A further variation of this configuration was made by using a
 

2.5 cm diameter cathode and a 4.67 mm diameter anode. Both electrodes
 

were machined from aluminum stock. These electrodes were separated by
 

a 2.5 cm gap.
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A basic difficulty arose when the Langmuir probe was grounded in
 

any way. The ground caused the glow discharge to form between the
 

anode and probe, this increasing the conducted current by I mA and dis­

torting the local plasma properties. To prevent this the probe bias was
 

made to float with the plasma as reference by employing DC battery
 

operated power supplies.
 

In order to further reduce the temperature and density, this
 

discharge system was operated in conjunction with a baffle system,
 

shown in Figure 2.12B. The baffle system was positioned at the entrance
 

of the nozzle; two and three phase baffles were used. The baffles also
 

helped prevent the probe from being an active part of the glow circuit
 

and helped suppress the electron concentration and temperature values.
 

With the addition of the baffle system, the current levels sensed by
 

the probes in the jet were reduced from 10-6A to 10-9A. The resulting
 

electron temperatures were found to be on the order of 102K. The
 

electron number densities indicated in the jet varied from 101 cm
- 3 to
 

4-3 

104 cm ; depending on the operating pressure. As a result of the 

achievement of satisfactory test conditions, this electrode configura­

tion and baffle system were used for the production and control of the
 

low temperature laboratory plasma.
 

2.3 Experimental Conditions
 

The simulation of D-region probe flows as discussed above,
 

required some properties to be scaled by two orders of magnitude. With
 

these scaled values, the test conditions in the experimental configura­

tion were determined. With the introduction of baffles and different
 

electrode geometries discussed above, the production of an appropriate
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plasma was achieved. However, the available pumping apparatus for this
 

experimental work did prove to limit the altitudes which the modeled
 

flow could simulate.
 

Table 2 presents the scaled experimental conditions for the
 

D-region. The table lists the test conditions for all of the altitudes
 

of interest in the D-region (40 km to 90 km). It includes parameters
 

for the glow discharge chamber and test chamber, specifically: the mass
 

flow rates, m, static and stagnation pressures, PE' Po' densities, P.,
 

and the baffle and electrode configurations.
 

The required mass flow rates for the steady state flow configura­

tion were determined from the specified volume flow rate; the volume 

flow rate is characteristic of the pumping system. The two Welch 1397B 

vacuum pumps each has a volume flow rate of 8.5 x 10 m sec Their 

combined volume flow rates were reduced in the calculations by 30 

percent to account for mechanical and flow losses. With an effective 
-3 -l
 

2
volume flow rate of 1.18 × 10- m sec , the D-region probe flows that
 

could be simulated were at altitudes to 70 km, 80 km, and'90 km.
 

The electron number densities and temperatures were controlled by
 

the baffle system; two and three phase baffles were used and are shown
 

in Figure 2.13. The baffles were machined from plexiglass and posi­

tioned at the entrance of the nozzle. In the subsonic flow configura­

tion the two phase baffle was used at the 70 km and 80 km altitudes.
 

The three phase baffle was employed for the 90 km altitude. In the
 

supersonic flow configuration, no baffles were required to control the
 

temperature or densities of the plasma.
 



Table 2: Sdaled Experimental Conditions 

M 
n 

ALT
(km) 

m
(g sec - ) 

PE
(gcm- ) 

Po (Glow)
(Torr) 

PE 
(Torr) 

Electrode 
Configuration 

Baffle 
Configuration 

0.3 40 3.90 1.30 x 10-3 ' 1.89 x 102 1.78 x 102 Not Tested Not Tested 

50 1.08 3.68.x 10-4  5.25 x 101 4.95 x 101 Not Tested Not Tested 

60 3.10 x 10- 9.20 x 10-5 1.81 x 101 1.42 x 101 Not Tested Not Tested 

70 8.75 x 10-2 2.14 x 10-5 4.!14 3.89 Lg. Anode 2 - Phase 

80 1.76 x 10-2 4.32 x 10-6 8.54 x 10- 8.00 x 10- Sm. Anode 2 - Phase 

90 3.68 x 10-3  7.50 x 10-7 1.68 x 10- 1.58 x 10- Sm. Anode 3 - Phase 

2.0 40 /3.90 32.36 x 10- 27.88 x 10 21.00 x 10 Not Tested Not Tested 

50 1.08 6.50 x 10-4 2.19 x 102 2.80 x 10 Not Tested Not Tested 

60 3.10 x 10- 1.60 x 10-4 6.25 x 101 7.85 Not Tested Not Tested 

70 8.75 x 10-2 3.78 x 10-5 1.75 x 101 2.25 Lg. Anode No Baffle 

80 1.76 x 10-2 7.35 x 10-6 3.54 4.55 x 10- 1 Sm. Anode No Baffle 

90 3.68 x 10 1.33 x 10 7.24 x 10 9.30 x 10 Sm. Anode No Baffle 



Table 2: Scaled Experimental Conditions (continued) 

n 
ALT 
(km) 

nL3 
(cm ) 

Xe-n 
(cm) 

Xn-n 
(cm) (cm-) 

e-n 
(cm) 

n-n 
(cm) 

Glow Glow Glow Exit Exit Exit 

0.3 40 7.5 x 1018 
018 

7.65 x 10-4 
-3-518 

3.06 x 10-5  7.2 x 1018 8.0 x-10 -4 3.2 x 10-5 

50 2.09 x 10 3.06 x 10-3 7.84 x 10-5  2.0 x 10 .3.2 x 10-3 8.2 x 10-5 

60 
17

5.95 x 10
7017 

-217
1.14 x 10-2 2.3 x 10 -4 5.7 x~117 

1 1.2 x 1024. io82x 2.4 x 10 

70 1.68 x 1017
016 

4.01 x 10-2 
-1031­

7.84 x 10-4 1.61 x 104.2 x 10­ 2 8.2 x 10- 4 

80 3.38 x 10 1.9 x 10- 1 5.35 x 10-3 3.24 x i016 2.0 x 10-1 5.6 x 10-3 

90 156.68 x 10 
-1

8.6 x 10 
-215

1.9 x 10 6.4 x 10 9.0 x 10-1 2.0 x 102 U 

2.0 40 7.5 x 1018
018 

7.65 x 10­ 4 

-3015 
3.06 x 10­5 1.47 x 3.9 x 10­ 3 1.56 x 10­ 4 

50 2.09 x 10 
17 

3.06 x 10- 3 
-20-4 

7.84 x 10-5 4.1 x 10 1.56 x 10-2 4.0 x 10-4 

60 5.95 x 10 1.14 x 10- 2 2.3 x 10-4 1.16 x 101 7 5.8 x 10-2 1.17 x 10- 3 

70 1.68 x 4.01 x 10­ 2 7.84 x 10- 4 3.24 x 16 5.8 x 10­ 2 4.0 x 10­ 3 

80 3.38 x 1016 1.9 x 10-1 5.35 x 10-3 6.6 x 1015 2.0 x 10-1 2.7 x 10- 2 

90 6.68 x 1015 8.6 x 10-1 1.9 x 10­ 2 1.3 x 1015 9.69 x 10- 1 9.69 x 10­1 
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Subsonic Nozzle
 

(A) Two Phase Baffle
 

Nozzle
 
ISubsonic 


(B) Three Phase Baffle
 

Figure 2.13 Baffle Systems
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The electrode configurations used for the production of the
 

scaled plasma are shown in Figure 2.14. At the 80 km and 90 km alti­

tudes the electrode configuration consisted of the 4.76 mm diameter
 

anode and the 2.5 cm diameter cathode. The electrodes were separated
 

by a 2.5 cm gap.. At the 70 km altitude, 2.5 cm diameter electrodes
 

were used, Also separated by a 2.5 cm gap. Since the amount of source
 

ionization is reduced by the higher chamber pressure, the larger anode
 

was employed at the 70 km altitude to increase the order of magnitude
 

of the electron number density, and accordingly reduce the magnitude
 

of the Debye length.
 

2.4 Baffle System Effect on the Recombination Process
 

The electron concentration at the exit plane of the nozzle was
 

controlled by the baffle system, as the baffles lengthened the path of
 

plasma travel from the source and increased the flow time, thus allowing
 

The electron loss mechanisms
the recombination process to progress. 


involve diffusion to the walls and recombination. For purposes of
 

analysis, it is here assumed that the plasma is recombination -


The
controlled from the source condition in the discharge chamber. 


diffusion to the walls, followed by surface neutralization, is pre­

sumed to be a negligible loss mechanism on the basis of surface to
 

volume estimates. The resultant electron density at the exit plane
 

of the nozzle will then be accounted for by an effective, average
 

recombination coefficient (30).
 

First, for the ionization processes, it can be shown that the
 

gas flow in the discharge chamber remained long enough to achieve
 

equilibrium with the entire volume of plasma before entering the baffle
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Figure 2.14 Glow Discharge Test Configurations
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system. The time required for ionization of the gas entering the
 

discharge chamber can be expressed as the inverse of-the electron­

neutral collision frequency, as
 

t 1
 
noa
 

where n is the neutral particle density, a is the cross section for
 

ionization, and c is the mean (thermal) velocity of the electrons.
 

value of t = 10- sec is indicated. Clearly, the cold gas input to the
 

116 -3 1-15 
Taking a lower limit on density at 10 cm , a 10 for electron­

nitrogen ionization at 1 eV (30) and c 
-7 

= 7 x 10 
-1 

cm sec at 1 eV, a 

7 

discharge chamber will quickly reach equilibrium with the local plasma.
 

Second, for the recombination, the baffles increased the path of the
 

flow without increasing the velocity. The gas in the discharge chamber
 
-i . -i 

flows at 6.1 cm ses in the subsonic case and at 16.8 cm sec in the
 

supersonic case; these velocities were taken as average, constants
 

through the baffle system. The time for the flow through the nozzles
 

3
was on the order of 10- sec. The time for the flow through the dis­

charge chamber and baffles was about 6 sec for the subsonic case and
 

about 2 sec for the supersonic case. These relatively long times in
 

the steady state flow system allowed recombination to proceed to a
 

limiting state. The electron density recombination in the test flow
 

will be further discussed in section 5.4.2, relative to specific data.
 



CHAPTER III
 

DIAGNOSTIC DEVICES
 

3.1 Impact Pressure Probe
 

An impact pressure probe (21) was used to determine the properties
 

The nature of the response from an
of the flow field in the test jet. 


There are three basic
impact pressure probe depends on its design. 


types of response errors that arise with an impact pressure probe,
 

which can be minimized by a carefully designed probe; these will now
 

be considered.
 

error is related to the ratio of probe diameter to dis-
The first 


charge jet diameter. This ratio should be made small so that the probe
 

The impact probe employed here
 measures localized impact pressure. 


was designed with a diameter that was only 2 percent of the subsonic
 

jet diameter and 4 percent of the supersonic jet diameter, thus
 

minimizing the extent error.
 

The second error is related to the ratio of probe length to probe
 

diameter. When slip or transitional flow conditions exist within the
 

probe, the boundary layer growth can affect the pressure response (31).
 

The slip flow regime occurs for Knudsen numbers within the range
 

0.01 < K Rn-1/2 < 3 (32). For the subsonic jet flow, a slip condition
 n 


occured within the impact probe at the scaled 70 km and 80 km conditions.
 

At the scaled 90 km condition, transitional flow occured within the
 

probe. In the supersonic jet flow, transitional flow occured within
 

the probe at the scaled 80 km and 90 km altitudes, while the slip flow
 

condition occured at the scaled 70 km altitude. Rogers et al. (31)
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point out that the length to diameter ratio should be larger than about
 

20 for the slip and transitional flow conditions so that the errors
 

resulting from this geometry would be negligible. This impact pressure
 

probe was designed with a length to diameter ratio of 32.
 

The third type of error is related to viscous effects due to the
 

flow within the probe. The extent of viscous corrections to the impact
 

pressure probe response depends on the specific flow conditions, as
 

previously discussed. The viscous corrections could be minimized by
 

designing a probe with an internal diameter which would allow the flow
 

to attain the free molecular flow condition, K R -1/2 > 3 (32). This
 nn
 

condition, however, was not reached by the flow within the probe.
 

Viscous corrections required for the slip and transitional flow regimes
 

were obtained by Eq. (4.2.1) for subsonic flow and by Eq. (4.3.1) for
 

It was found that the corrections were less than 2
supersonic flow. 


percent for the subsonic flow case, while no viscous corrections were
 

required in the supersonic flow configuration. The response from the
 

impact probe will be further discussed in Chapter IV.
 

The impact pressure probe was designed so that the above errors
 

in response would be minimal. It was constructed from 0.5 mm outside
 

diameter, 0.25 mm inside diameter, stainless steel hypodermic tubing,
 

1.62 cm long. The hypodermic tubing was epoxied into a 6.35 mm outside
 

The brass sleeve was epoxied into a 6.35 mm
diameter brass sleave. 


outside diameter brass tube which was electrically insulated by pyrex
 

tubing, 8 mm in diameter. The inlet (sensing) end of the probe had an
 

external chamfer of 10 degrees. The length of hypodermic tubing
 

The probe
extending from the brass sleeve to the chamfer tip is 8 mm. 
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was connected to the Cole-Parmer and Granville-Phillips pressure
 

measuring instruments through 6.35 mm outside diameter copper tubing.
 

The impact pressure probe configuration is shown in Figure 3.1.
 

3.2 	 Langmuir Double Probe
 

The unique design of the Langmuir double probe (10) was developed
 

to facilitate the removal and replacement of the electrode filaments.
 

This 	alleviated the need to construct an entirely new probe when the
 

filaments became contaminated by deposits from the discharge during
 

each 	use. The configuration is shown in Figure 3.2. The probe con­

sisted of removable electrode filaments within a permanently epoxied
 

housing; the filament used was made of tungsten wire, 0.25 mm in
 

diameter.
 

The electrode filaments were mounted in 0.8 mm outside diameter,
 

0.4 mm inside diameter stainless steel hypodermic tubing. Each tube
 

was filled with Hysol K16 conductive epoxy after which the tungsten
 

filaments were inserted. Hysol IC whit.e epoxy was placed over the
 

interface of the filament and stainless steel tubing forming a conical
 

shape as it cured. The epoxy cone was 3 mm in length and 1.6 mm in
 

diameter at its base.
 

The filament housing was formed from a Hysol 1C white epoxy mold.
 

The mold was machined into a conical shape, 4.76 mm in diameter at the
 

front and 8 mm in diameter at the base. Two stainless steel hypodermic
 

tubes, 1.2 mm outside diameter and 1.6 cm long were placed through the
 

center of the cone and epoxied in place. Each tube was insulated with
 

two layers of Scotch No. 74 mylar tape, 0.05 mm thick. The hypodermic
 

tubing was connected to RG 174 coaxial cable. The coaxial cable was
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Figure 3.1 Impact Pressure Probe 
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placed'through a 6.35 mm outside diameter brass tube which acted as
 

an electrostatic shield (33). An 8 imm outside diameter pyrex tube was
 

fitted over the brass shield, insulating the unit. The pyrex and brass
 

tubing was permanently epoxied to the filament housing, forming a
 

vacuum seal. When the electrode filaments were inserted into the
 

filament housing the separation distance between them was 2 mm. To
 

minimize the end effects (7) in the plasma flow configuration, each
 

tungsten filament was made 4 mm long.
 

Figure3.3 shows the circuit used for the Langmuir probe. The 

circuit suggested by Johnson and Malter (25) permits the potential 

between the electrodes to float with respect to the plasma. The cir­

cuit used in this work consisted of a variable DC power supply,
 

Keithley 602 electrometer and a Dynamics 501 millivoltmeter. The
 

electrometer used for the recording of the current, and the milli­

voltmeter used for precise voltage settings, were both DC battery
 

powered, allowing the system to float.
 

The current conducted by the probe will indicate the correct
 

plasma parameters only when the potential difference between the
 

electrodes is floating with the plasma as reference. When the
 

reference is grounded, the glow discharge forms between the anode and
 

probe, because the resistance between the probe and anode is less than
 

between the cathode and anode. The grounded reference then causes the
 

current to increase by I mA. This excessive current was found to
 

clearly distort the plasma parameters being measured.
 

Before every test run it was found necessary to insure that the
 

electrode filaments were carefully cleaned. This was done by first
 



To Probe 

tU 
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Supply I Electrometer 

Figure 3.3 Circuit for Langmuir and Blunt Probes 
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flushing the filaments with acetone so as to insure that all dust and
 

oil deposits had been removed. Second, after the probe was under
 

vacuum at about 1 Torr, 10 mA of current was applied across the fila­

ments for 15 sec intervals. This procedure was repeated until all
 

spurious deposits were removed from the surface, as indicated by the
 

soft-glow between the two filaments.
 

The cleanliness of the probe was important in influencing the
 

quality and reproducibility of the current-voltage characteristic
 

through the active collecting area of each filament (34). After every
 

test run the electrode filaments were removed from the filament housing
 

and replaced with new ones.
 

3.3 	 Scaled Rocket-Borne D-Region Electrostatic Blunt Probe
 

A scaled electrostatic blunt probe was designed and fabricated
 

to simulate the rocket-borne D-region probes used by Hale (23). The
 

blunt probe was scaled down by two orders of magnitude. It is shown
 

in Figure 3.4A. The probe consisted of a 0.25 mm diameter tungsten 

wire 	with its end surface functioning as the collector disc. The wire
 

was wrapped on its side with five layers of Scotch No. 74 mylar tape;
 

this 	forms the insulator ring between the collector disc and guard
 

ring. 	 A 1 mm outside diameter, 0.75 mm inside diameter stainless 

guardsteel hypodermic tube formed the guard ring for the probe. The 

ring was insulated with two layers of mylar tape leaving only the front 

end of the probe electrically conducting. The return electrode was 

formed by a 1.6 m outside diameter, 1.35 mm inside diameter stainless 

steel hypodermic tube. The return electrode was 1 m long and was 

from the front end of the probe. The collector disc,positioned 3 m 
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guard ring and return electrode were each connected to No. 24 copper 

wire which was insulated with heavy formvar. The copper leads from 

the guard ring and collector disc were connected to RG 174 coaxial 

cable. The copper wire from the return electrode formed the third lead 

in the circuit for the probe system. The coaxial cable and third lead 

passed through a 4 mm outside diameter brass electrostatic shield which 

was epoxied to a 2.4 mm outside diameter pyrex tube. This pyrex tube 

was epoxied to the return electrode forming a vacuum seal. The brass 

tubing was insulated with pyrex tubing which ran the length of the 

probe. The pyrex and brass tubing were epoxied together forming 

another vacuum seal. 

Figure 3.B shows the circuit for the blunt probe system. The
 

collector disc was biased relative to the return electrode as in the
 

Langmuir doublegt-p&-be system. No current will be drawn through the
 

guard ring due to the 22 Mr2 resistor between the collector disc and
 

guard ring. The guard ring will, however, assume the same potential
 

as the collector disc. The floating circuit for the blunt probe is
 

the same circuit used for the Langmuir probe.
 

The blunt probe was cleaned before every test run. The front
 

end of the probe was first rubbed smooth with No. 500-A silicon carbide
 

paper. Acetone and carbon tetrachloride were then used to clean the
 

collector disc, guard ring, and return electrode.
 



CHAPTER IV
 

EXPERIMENTAL CHARACTERISTICS OF THE PLASMA JET TEST FLOW
 

4.1 	 Introduction
 

The test flow was produced by metering room temperature purified
 

air through a choked orifice feed line into a glow discharge chamber
 

which 	allowed passage through a nozzle into a low pressure teSt chamber.
 

The gas pressure in the glow discharge chamber was adjusted to a value
 

required to obtain the desired test conditions at the exit plane of
 

the nozzle. The scaled D-region conditions therefore set glow and test
 

chamber pressures, and both being related to the desired flow through
 

the nozzles. The pressures in the test chamber were those correspond­

ing to 	the scaled D-region values.
 

An impact pressure probe was used to identify the flow field
 

properties in the test jet. The open-ended type of probe was employed
 

because it is easy to construct and with proper design the viscous
 

corrections would be less than 1 percent down to a Reynolds number of 

about 25 (21). The probe was initially positioned at the exit plane 

of each nozzle. 

4.2 	 Subsonic Flow
 

The subsonic nozzle was designed to produce a Mach number on the
 

order of 0.3. This condition represents the average descending
 

-
velocity of a rocket-borne blunt probe (100 m sec ) through the
 

D-region of the ionosphere.
 

The flow-field patterns from the nozzle were found to be charac­

teristic of low density flow in a round, free jet (21). The flow at
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the exit plane of the nozzle was found to be uniform and parallel. The
 

mixing region of the jet was found to extend about four nozzle diame­

ters downstream of the exit plane. Within this region there is a
 

shearing layer between the ambient test chamber gas and the jet flow;
 

in this shear layer the turbulent intensity and Reynolds stress are
 

maximum. The shearing layer reduces the kinetic energy in the flow
 

field. Downstream of the mixing region there is an adjustment region
 

where the flow decays in a turbulent state (31).
 

The Reynolds number for the flow within the 0.5 mm diameter
 

impact pressure probe required only very small viscous corrections to
 

the impact data. The Reynolds number values were 2.4 at 90 km, 14 at
 

80 km and 69 at 70 km. The viscous corrections are expressed by the
 

ratio of the measured impact pressure (Pi) to the impact pressure
 

under free molecular flow conditions (Pideal) which is given by (21)
 

YM22
P. 

I - 4n 11 + 1 (4.2.1) 

Pideal 2 

where C is a pressure coefficient parameter; it is determined for
 

each Reynolds number from the experimental curve given by Enkenhu§
 

(21). The values for the viscous corrections are 1.13 at 90 km, 1.02
 

at 80 km and 1.0 at 70 km. These corrections are less than 2 percent
 

for the subsonic flow condition.
 

The jet flow field was determined by measuring the impact
 

pressure in the discharge jet relative to the static pressure in the
 

test chamber (Pi - P). Measurements were made along the centerline
 

and across the exit plane of the nozzle. 'Figure 4.1 is representative
 

of the impact pressure profiles obtained across the exit plane of the
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nozzle and at positions downstream of the exit. Pressure is nondimen­

sionalized with the test chamber static pressure to indicate a
 

typical.response for the D-region under subsonic flow conditions. The
 

decay of the impact pressure across the exit plane indicates the effect
 

of the shearing layer on the flow. The turbulent decay of the flow
 

dominates the field beyond about 10 mm from the exit plane of the
 

nozzle.
 

Mach number distributions were determined from the ratio of 

impact to static pressure as (21) 

n idal 1) 21 (4.2.2) 

where it is assumed that the flow decays isentropically. The center­

line Mach number at the exit plane of the nozzle was found to be 0.27,
 

which is within 10 percent of the intended value. Figure 4.2 shows the
 

decay of the Mach number across the exit plane of the subsonic nozzle
 

flow. The jet can be seen to possess a fairly uniform core region of
 

about 3 mm in diameter at the exit of the plane of the nozzle.
 

4.3 Sup-ersonic Flow
 

The supersonic nozzle was designed to produce a centerline Mach
 

number of about 2 in the test jet. Rocket-borne probes utilized by other
 

researchers (5,6) typically Ascend supersonically through the iono­

sphere and descend without a parachute drag system, thus reaching
 

large supersonic velocities. A Mach number of 2 is taken as repre­

sentative of the flow field that such a probe will experience in its
 

passage through the D-region.
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The scaled laboratory experiment utilized a test jet with flow
 

field patterns from the supersonic nozzle that are once again
 

basically characteristic of low density flow from round, free jets.
 

In the supersonic flow test configuration in the present case, the
 

static pressure ratio across the jet-background interface is equal to
 

1 and therefore compression or expansion zones are not present near
 

the exit of the nozzle. Abramovich (36) points out that the near field
 

jet behavior is independent of the'flow velocity and temperature when
 

compression zones are not formed at the exit of the nozzle. Under
 

such a condition the flow characteristics from the supersonic nozzle
 

will be similar to that for a subsonic jet. Compression zones will
 

form away from the nozzle exit when the static pressure ratio across
 

the jet boundary increases above the unity value (35).
 

The viscous effects in nozzle flow and in the impact pressure
 

probe response are determined to be negligible on the basis of flow
 

Reynolds number. Relative to the former, the smallest value of the
 

nozzle Reynolds number based on the sonic throat conditions is about
 

140. Ashkenas and Sherman (37) point out that the viscous effects
 

from the growth of the boundary layer at the throat should therefore
 

be small. Relative to the latter, the viscous effects on the impact
 

pressure probe response are negligible for Reynolds numbers above
 

about 20 (21). The Reynolds numbers are found to be 33 at 90 km, 183
 

at 80 km and 942 at 70 km. Therefore, no viscous corrections were
 

necessary for the supersonic flow configuration.
 

The radial impact pressure profiles were determined in the same
 

manner as for the subsonic flow configuration. Figure 4.3 shows a
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representative impact pressure profile across the exit plane and at
 

subsequent positions downstream of the exit. As the radial distance
 

from the nozzle axis is varied, the impact pressure is found to peak
 

at rn = 1 mm. As the axial position downstream is increased, the peak
 

vxlue is found to decrease relative to the centerline pressure, an
 

effect compatible with decreasing Reynolds number. The dissipation of
 

kinetic energy in the mixing region between the potential core and jet
 

boundary causes the location of the peaks to move radially inward toward
 

the nozzle axis as the axial distance increases (31).
 

Mach number distributions were determined from the ratio of static
 

and impact pressure by the Rayleigh formula (35), which is given as
 

Y- -1 
S= [Mn 2 (y + l)]y - 1£y 2 1M 2 y y - 1 (4.3.1) 

P n 2 Y +l n y+l (43 

=
For a ratio of the specific heats, y 1.4, the form of the equation
 

for the Mach number is
 

P. 

M = 0.78 (---) 0.47 (4.3.2)
n p 

The centerline Mach number is found to be 2.1, which is within 5 percent
 

of the intended value. Figure 4.4 shows the decay of the Mach number
 

across the exit plane of the supersonic nozzle; it indicates a core
 

region of about 1.5 mm in diameter at the exit plane of the nozzle as
 

determined from the distance between the impact pressure peaks. Figure
 

4.5 shows the axial distribution of the Mach number from the exit plane.
 

The Mach number is found to increase downstream until the region where
 

compression zones are formed, about 2 mm; this is due to the increase
 

in the local static pressure ratio because of viscous interactions.
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In Figure 4.5,the gradual decrease of the Mach number is observed as
 

the distance from the exit plane of the nozzle increases beyond 2 mm.
 



CHAPTER V
 

ANALYSIS OF EXPERIMENTAL DATA AND COMPARISON
 

WITH ROCKET-BORNE BLUNT PROBE DATA
 

5.1 Introduction
 

The experimental-flow facility was used to produce accurately
 

scaled D-region probe flows. The cylindrical double Langmuir and blunt
 

probes were both used to obtain current-voltage data from which electron
 

temperatures and number densities of the weakly ionized plasma were
 

evaluated. Data from the test runs are presented and will be evaluated
 

by employing appropriate continuum, transitional, or collisionless
 

diagnostic probe theories for specific operating regimes. The specific
 

probe theory most valid for the reduction and interpretation of the data
 

is determined by the plasma-probe interaction phenomena. The relevance
 

of each of the probe theories is dependent upon knowing the degree of
 

interaction between the plasma electrical and fluid mechanical properties,
 

as related to the probe size. The plasma-probe regime will be delineated
 

for each test condition.
 

Reference values of the plasma electron temperatures and densities
 

are determined by double Langmuir probe diagnostics, whose accuracy will
 

be established relative to the probe theories. Comparison of the raw
 

data obtained by the Langmuir and blunt probes, and reduced plasma
 

properties determined from available diagnostic probe theories, will
 

enable the several relevant blunt probe theories to be evaluated under
 

carefully controlled experimental conditions. Again, since the theory
 

of the collisionless and transitional Langmuir probe is well understood
 

(7, 22), the reduced plasma properties derived from the cylindrical
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double Langmuir~probe will be used as reference to indicate the validity
 

of the 	blunt probe reduction procedures. Evaluation of ionosphere data
 

recorded with rocket-borne blunt probes will also be made.
 

5.2 	 Criteria Related to Application of Particle Collection Theories
 

Collisions between particles provide a most fundamental influence
 

on the current conducted to a probe and therefore the indicated tempera­

ture and density of the plasma. These interactions among neutral
 

particles, ions, and electrons provide a number df possible collisional
 

parameter scales within the plasma. The probe theories that have been
 

formulated are clearly dependent upon an understanding of the internal
 

collisional structure of the plasma. Specifically, when an electrostatic
 

probe is inserted into a plasma and biased relative to it, collisions
 

between particles within the effective collection layer of the probe
 

determine the exact state of the plasma-probe interaction, such that the
 

probe 	may be in a continuum interaction with respect to one particle
 

(e.g., 	ions) while in a collisionless regime with respect to another
 

type of particle (e.g., electrons). Such criteria for the validity of
 

any specific theory must then be examined.
 

In order for a collisionless probe theory to accurately describe
 

electron collection within the collection layer of the probe, two
 

criteria must be met. The first criterion is a function of the degree
 

of ionization in the plasma and is related to the number of particles in
 

3 	 3 
a Debye cube, nAD (12). When n D >> 1, electrons are free to move 

within the effective collection layer of the probe without encountering 

collisions between ions or neutral particles. This is a physical 

constraint on the structure of the collection layer immediately
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adjacent to the probe surface and may be represented by (12)
 

3
 
T
 

(0.329) 	 nn 1 (c.g.s.) (5.2.1) 

e 

for electron collection, where Te is the electron temperature and ne
 

is the electron number density. Eq. (5.2.1) was derived from the Debye
 

length, XD' a basic parameter that indicates the thickness of the
 

effective collection layer adjacent to the probe; it is given by (2)
 

e
AD = L i ,] (c.g.s.) 	 (5.2.2)
 

where k is the Boltzman constant.
 

A second criterion specifies the collision state of the plasma­

probe interaction for specific particle species being collected. When
 

a probe collects one particular species, the average distance between
 

collisions of that particle and a neutral particle must be large
 

This reduces the possibility of
compared to the probe size, rp. 


This criterion is
collisions in the region near the probe surface. 


represented by (12)
 

>> 1 	 (5.2.3)s-n 

r 

p 

is the mean free path between a neutral particle and the
where X 
s-n
 
is the probe radius.
attracted species, and r 


P 
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When both the above criteria 
are not satisfied, collisionless
 

probe theory is not valid. Transitional (X > 
 r ) and continuum
 

(As-n < rp) probe theories which account for the increasing effect of
 

collisions between particles within AD 
must then be applied to explain
 

the plasma behavior as influenced by any surface fluid interaction
 

layer(s) and electrical interaction layer(s) in the near field of the
 

probe.
 

The plasma-probe interaction problem may be further complicated
 

by the mere presence of the probe. 
 In the electrostatic probe theories
 

which will be discussed, the probe acts as a sink for the charged
 

particles and so is itself a cause for perturbation in the plasma.
 

Particles are collected with the assumption that the probe, through
 

surface recombination processes, is a perfect absorber of charged
 

particles. 
Once a particle is collected by the probe as current, it is
 

removed from the problem. 
The degree of perturbation arises from the
 

size of the probe and the magnitude of the conducted current. 
If the
 

current collected is small compared to the current which maintains the
 

plasma, it can be neglected as a disturbance source (12). This was
 

experimentally considered in a case 
(12) where the glow discharge current
 

was maintained at mA, while the conducted probe current was less than
 

10- 9 A; in that situation, the current conducted by the probe could be
 

ignored as a source of plasma disturbance.
 

5.3 	 Review of Particle Collection Theories
 

Various electrostatic probe theories are used to evaluate the
 

relationship between ambient plasma conditions and the current-voltage
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response of the probe, including the effect of field-fluid structure of
 

the plasma during the collection. When a probe is biased at a potential,
 

Vd' relative to the potential of the plasma, V , the attracted particles 

are influenced by the resulting electrical fields, and so will move 

relative to the ambient plasma where the particles are generally 

assumed to have a Maxwellian velocity distribution. 

Random particle motion, mobility, and diffusion processes control
 

the convective motion of the attracted particles through distinctly
 

different layers in the near field of the probe. Specific layers can
 

be defined as being dominated by one or more of these processes. When
 

the attracted particles reach the surface of the probe they are
 

absorbed by surface recombination and surface diffusion processes, thus
 

satisfying the zero density boundary condition at the probe's surface.
 

In a collisionless plasma, the dominant feature involves attracted
 

particles with an equilibrium random kinetic flux at a distance of
 

one mean free path from the probe's surface. In a continuum plasma,
 

the probe size is the dominant scale length and particles are driven
 

toward the probe in a field-diffusion process by the nondimensional
 

probe potential, d = eVd (kTe) 1. Both collisionless and collisional 

probe regimes involve the concept of a "sheath", or electrically
 

perturbed region in the general sense, near the probe's surface; this
 

region can be envisioned as extending outward from the physical collecting
 

surface to create an effective, displaced particle collection surface.
 

Distinctly different from the "probe" or "flow" condition, a sheath may 

be collisionless, transitional, or collisional (7). The mathematical
 

formulation of this "sheath" region ultimately must match the ambient
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plasma conditions on one side with the zero density surface condition
 

on the other side. I
 

The standard and specific definition of a sheath (7) is: that
 

region near the probe's surface where charge separation (ne # ni ) 

cannot be neglected, and the particle motion is determined by the 

magnitude of the positive or negative bias of the probe and the extent 

of the plasma-probe interaction condition. Under steady state
 

conditions tie flux of particles through the sheath to the probe is
 

constant, and the rate at which the attracted particles are absorbed
 

by the probe is balanced by the rate at which charge particles enter
 

the sheath region. In the sheath, charge neutrality (ne = ni ) does
 

not hold, and the distribution of charged particles is the dominant
 

feature of this region. Particle density and motion must be consistent
 

with the local, altered electric field. Some standard, basic solutions
 

are well known (11, 27).
 

Generally, electric field generated by the collector-plasma
 

potential difference extends into the plasma away from the probe, and
 

is diminished by the plasma within a characteristic length which is a
 

function of the electron temperature and number density. Under
 

certain conditions, this effective screening distance is found to be
 

the Debye length, XD' represented by Eq. (5.2.2). The formulation of
 

a value for screening distance was examined in the specific sense by
 

Lai (2), where it was pointed out that the standard, physical
 

interpretation of XD as an indicator of a sheath thickness is only
 

valid for d << 1. Further, the Debye ratio, rpD 1 (7), indicates
 

the extent of charge particle saturation within the sheath region (2).
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When rp >> XD (thin sheath),the paths of the attracted .particles to the
 

probe are straight and intersect the probe perpendicular to the collec­

tion surface. For a thick sheath, rp << D' the trajectory of the
 

particles will converge toward the probe and those particles inter­

secting the collection surface will be collected as current. Thus, in
 

the collisionless thick sheath limit, XDD =, the current conducted by
 

the probe will be over estimated relative to the current collected
 

through a thin sheath (7). However, if s n x the number of
 

attracted particles reaching the probe surface is decreased by the effect
 

of charge particle collisions within the sheath region (33).
 

The collisionless plasma-probe interaction state (collisionless
 

probe and collisionless sheath) is described by the orbital-motion­

limit (7). The current conducted in this regime is that-due to attracted
 

particles that pass through a collisionless sheath and are not prevented
 

by potential barriers from reaching the probe. This current is a
 

function of energy and angular momentum considerations (7). In the one
 

dimensional central-force problem relating the trajectory of the
 

particles to the current collected by the probe, the potential energy,
 

E p (r, Q), of the attracted particles in the collisionless regime is
 

related to their radial velocity, v., and local electrical potential,
 

and is given by (7)
 

n2 

Ep (r, Q) = Z i(r) + 22 (5.3.1) 

2mr2 

where Q is the angular momentum of the particles, Z is the charge on
 

the particles, and 4(r) is the local particle potential. The potential
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energy governs the radial motion of the particles. The total energy
 

of the particles, E, is not affected by the motion, and is given by (7)
 

2
 
mv
 

E r + E (r,Q) (5.3.2)
2 , p 

The total magnitude of E and Q together determine the path and
 

location of the particles relative to the probe's collection surface.
 

When r X o, potential barriers will dominate E (r, Q) and prohibit
 
pD p 

certain particles from reaching the probe. Particles whose trajectory
 

is dominated by the magnitude of R will not be absorbed by the probe,
 

but will pass by it because of their trajectory. The particles whose
 

value of EP (r, Q) are sufficient to overcome the effect of 2 will enter
 

trapped orbits. In a steady state collisionless probe theory, Chung
 

et al., (7) point out that the procedure to determine the density of
 

these particles has not been formulated. However, Laframboise (17) has
 

found that the influence of particles in trapped orbits is not
 

important in the determination of the current collected by the probe.
 

The orbital-motion-limit is applicable when spherical or cylindrical
 

probes are used for collisionless particle collection. Chen (33)
 

points out that orbital-motions are not possible with plane probes
 

because of the probe's geometry; further, in that case the sheath size
 

is assumed constant after charge particle saturation, when Vd is larger
 

than V
 
p
 

In general, the state of the plasma within a sheath (electrically
 

perturbed) region is determined by the relationship between the species
 

mean free path, A, rp, and AD. In the case when XD >> A > r
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collisions between charged particles occur within a sheath region,
 

while a collisionless plasma exists with respect to the probe (7).
 

The gas operating pressure, P, willserve to define sn, and along
 

with other variables, AD' and so determine the degree of plasma-probe
 

interaction and thus the collisional state within the sheath. 

Specifically, since s-n (n ) where 0s-n is the species collision 

cross section, the number of collisions will increase with higher P 

and will prevent attracted particles from entering orbital (collisionless) 

motions in the near field of the probe. The magnitude of the electron 

density, n , electron temperature Te and applied probe potential, Vd' 

determine the thickness of the sheath (electrically perturbed) region. 

Chung et al., (7) review the many regimes of specific plasma­

probe interactions and the relevant analytical schemes for stationary
 

and flowing plasmas. The various operating regimes for electrostatic
 

probes are discussed and the available diagnostic theories are
 

formulated to interpret the probe's response within these regions.
 

The review work includes the response and operation of Langmuir probes
 

in transitional and collisionless plasmas. The use of Langmuir probes
 

in continuum plasmas is also presented, but as discussed, the validity
 

of the analysis in this regime is open to some question. In that
 

work, primary consideration was given to ion particle collection.
 

However, Lai (2) does present a specific electron collection
 

diagnostic theory appropriate forblunt probes in the continuum
 

regime of the ionosphere. Other blunt probe continuum theories have
 

been developed by Hoult (38) and Sonin (19), as noted above; again,
 

these theories were formulated primarily to explain ion collection.
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To date none of these blunt probe theories have been substantiated in
 

laboratory experiments appropriate for the lower ionosphere, D-region,
 

which is of primary concern in this work.
 

The cylindrical double Langmuir probe operating in the collision­

less and transitional regimes will be used in this work to determine
 

the properties of the plasma produced in the flow facility. This
 

probe consists of two relatively thin cylindrical (rp < k) electrodes 

which, when biased, conduct a current, the magnituide of which will
 

indicate the potential of the plasma, the onset of charge particle
 

saturation, and hence, the appropriate values of electron temperature
 

and number density. When this constraint, X > r is met, the
 

Langmuir probe will function in a plasma-probe interaction condition
 

which is collisionless or transitional, regimes which are well under­

stood theoretically and experimentally (7, 22). Because of the well
 

established collisionless and transitional operational procedures and
 

evaluation schemes for theLangmuir probe, it was considered sufficiently
 

reliable as a diagnostic tool to substantiate the state of the test
 

plasma, in order to then be able to evaluate the response of the blunt
 

probe for electron collection. Differences in response mechanisms
 

between the blunt and cylindrical probes will require an indepth
 

understanding of the difference in the collisionless and continuum
 

theories formulated for each of these diagnostic probes.
 

The diagnostic theories developed for cylindrical collisionless
 

probes, as outlined by Chung et al., (7), account for the formation
 

of orbits by the attracted particles within the collection surface.
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The most widely accepted and experimentally verified theory for
 

cylindrical collisionless probes was formulated by Laframboise (17).
 

This theory was formulated single probes and for the range, r p > 1,
 
p D
 

and has been well established as the primary comparative theory for the
 

particle collection processes in collisionless plasmas, where the
 

possibility of orbits formed by the attracted particles is most
 

prevalant.
 

The double probe method of diagnosing plasma properties was first
 

presented by Johnson and Malter (25); this analysis is appropriate for
 

collisionless probes with thin sheaths in static plasmas. A more
 

general development of double probe theory, including the effects
 

of thicker sheaths and the influence of applied potential on ion
 

current, has more recently been outlined (39). The work presented
 

there considered cases with r DI> 1, variable temperature ratios,
 
p D ­

and comparison of the results with those of Laframboise (17) for
 

similar conditions.
 

Chou et al., (40) have developed the most complete theory for
 

the operation of electrostatic single probe in the transitional plasma
 

regime. However, the work was quite detailed and did not permit a
 

form of the theory appropriate for simple interpretation of experimental
 

work (22). More recently, Talbot and Chou (41) have presented a
 

transitional regime analysis for saturation ion current to spherical and
 

cylindrical probes for the range rp I > 0 which can be used to 
p D
 

interpret diagnostic results. Their theory has compared well with
 

experiments conducted by Kaegi and Chin (42), and Kirchhoff et al., (22).
 

The Talbot-Chou theory was developed for cylindrical single Langmuir
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probes in a flowing plasma and describes the effects of collisions on
 

ion and electron current collection.
 

While the saturation current for a single probe can be used to
 

derive the plasma number density from double probe data, a specific
 

formulation including the effects of collisions in the transition
 

regime for dbuble probes has been presented by Thornton (43). It should
 

be noted that, generally, such thick sheath theories involve the
 

definiti6n of a sheath boundary and the evaluation of an effective
 

collection surface area at that position (22, 41, 43). Further, it
 

has also been noted (7, 22) that the double probe is less sensitive to
 

collisional effects, distortion, and the analytical theories can be
 

used with more confidence with double probes.
 

In the continuum plasma regime the effect of orbital trajectories
 

is reduced because of the increase in charge-neutral collisions. A
 

conprehensive discussion of the available theories for this regime is
 

presented by Chung et al., (7) and a detailed discussion-of direct
 

interest is included in the work of Kiel (44). Once again there does
 

appear to be a reasonably consistent analysis available when current­

voltage data up to saturation is used for the determination of plasma
 

properties. As one effort of interest Chung and Blankenship (45) have
 

developed a continuum theory appropriate for flat plate double
 

diagnostic interpretation; their theory has been experimentally verified
 

in experimentstby Chung (46).
 

The blunt probe geometry and relatively constant sheath size with
 

an increasing probe potential, V', above plasma potential, V , will
 
dp t
 

eliminate the formation of orbital trajectories of the attracted
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particles (33). This major difference in the particle collection
 

process for blunt probes requires different diagnostic theories to
 

describe the motion and path of the collected particles. The­

Child's Langmuir theory (47) was formulated to interpret the response
 

of highly biased plane probes in collisionless plasmas. This theory
 

can also provide a basic description of the electron collection
 

process (Vd > Vp) for blunt probes in other, non-orbital regimes.
 

A new electron collection theory for subsonic continuum blunt probes
 

was outlined by Lai (2). As yet, however, no theory for electron
 

collection in flowing plasma has been validated by laboratory experi­

ments.
 

5.4 Determination of Plasma Properties Using the Double Langmuir Probe
 

5.4.1 Introduction
 

The cylindrical dbuble Langmuir probe was used to define the
 

plasma properties in the static and flow configurations. From the
 

studies conducted in collisionless plasmas (10, 13), where the
 

Langmuir probe was used to determine the local properties of the plasma,
 

it was found that this diagnostic probe is dependable in securing
 

accurate and useful current-voltage data. A cylindrical geometry was
 

-

chosen for the probe because a large aspect ratio, gD 16, reduces
 

p
 

the influence of end effects on the response of the probe. The
 

double probe configuration was used because of the minimal -dsturbance "
 

of the plasma and, as concluded by Kirchhoff et al., .(22), the twin
 

electrode geometry is less sensitive to collisional effects than the
 

single electrode geometry and so would be more reliable in determining
 

the correct values of plasma temperature and density in the range of
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operation. Johnson and Halter (25) have pointed out that the double
 

probe's electrical circuit allows the probe to function independently
 

of the plasma discharge system. As discussed in section 3.2, the
 

Langmuir probe circuit is not grounded, but floats with respect to the
 

discharge system, and thus conducts current unaffected by the potential
 

which maintains the plasma discharge. The electron number density and
 

temperature were determined with this probe and are the basic properties
 

in the ionized, scaled regimes.
 

In the static plasma configuration, the values of electron tempera­

ture and density were measured at positions between y = 1 cm to y = 4 cm
 

from the center of the flow discharge chamber. The y direction is defined
 

along the axis of the nozzles between the discharge chamber and the
 

test chamber (Fig. 2.2); the reference point (y = 0) corresponds to the
 

center of the glow column, or the intersection of the transverse axis
 

along which the electrodes are positioned (Fig. 2.2). Under static
 

conditions the probe current was so small that it could not be measured
 

in the test chamber, because the discharge chamber walls localized the
 

plasma distribution. In the sulsoniA and supersonic flow configurations,'
 

the probe current was measured on the axis of the flow nozzle at the
 

exit plane, y = 8.5 cm from the center of the plasma source.
 

The precise interpretation of the data obtained with the Langmuir
 

probe requires the application,of diagnostic theories which are
 

appropriate for each operating regime. The equations which allow
 

electron temperature and number density to be determined from the raw
 

data are correctly applied only to specific collection regimes. As
 

discussed in section 5.3, the relationship between the collected
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particle mean free path, As-n, and AD and rp determine the exact 

operating regime of the probe with respect to the plasma. Raw data 

was obtained for collisionless (As n >> rp), transitional (As_n > rp 

and continuum (As-n < r p) plasma regimes. This data will be 

presented and then analyzed relative to the specific operating regimes 

where the probe was functioning. 

5.4.2 Static Source Plasma
 

The values of temperature and density for different altitudes of
 

interest in the D-region have been presented in Table 1. The scaled
 

values of discharge chamber pressure and number density and test (jet)
 

pressure and number density have been presented in Table 2; also, on
 

the basis of the approximation (24) that the glow discharge plasma will
 

have a cold (Ti 3000K) ion temperature and hot (T I eV Z 10,0000 K)
e 


electron temperature, the mean free paths (Ae-n, An-n ) presented in
 

Table 2 were estimated. The correct, specific method of reducing
 

double Langmuir probe data, comprised of current-voltage characteristics,
 

depends in detail on the relative magnitude of As-n, AD' and rp.
 

While the relationship of A and r can be estimated by the above
s-n p
 

method, the order of magnitude of XD requires values of ne as well as
 

Te for the different experimental positions and conditions. In order
 

to establish orders of magnitude for AD' an approximate evaluation
 

of ne, Te for all conditions by a standard collisionless double
 

probe analysis (25) will first applied to the experimental current­

voltage characteristics to be discussed.
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Figure 5.1 presents typical current-voltage characteristics for
 

the double Langmuir probe in the static plasma configuration for the
 

scaled 90 km regime; the data is for four axial positions relative to
 

the center of the glow discharge.
 

The current-voltage characteristics for the double Langmuir probe
 

at three different source pressures that model the 70, 80 and 90 km
 

altitudes are presented in Figure 5.2.
 

In general there is a well defined saturation region indicated
 

by the "knee" in these figures. In Figure 5.1, the probe is moved
 

away from the center of the plasma source and along the discharge chamber
 

axis, the "knee" indication of saturation is seen to decrease; the
 

reduced slopes and magnitudes of current conducted to the probe indicate
 

that the electron density of the plasma in the discharge.chamber
 

decreases, while the temperature increases, with distance away from the
 

center of the source. Also, relative to the data in Figure 5.2, some
 

general comments can be made. In a glow discharge, ionization is
 

caused by electron-neutral inelastic collisions, and as pressure is
 

increased the mean free path is decreased, resulting in lower electron
 

and ion densities. The reduced number of ions impinging on the cathode
 

will also serve to decrease its effective electron emissions. This
 

behavior would necessarily result in the anode collecting fewer
 

electrons; in Figure 5.2 the electron current is seen to decrease
 

from about 10-9A to about 10- 10A with increasing discharge pressure.
 

Figure 5.2 also demonstrates a decrease in the indicated degree of
 

saturation with increase in the gas pressure; there is little indicated
 

saturation for 70 km, while the 80 km data is anomalously high.
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The collisionless double probe analysis formulated by Johnson
 

and Malter (25) was applied to the current-voltage data to obtain an 

indication of the magnitude of ne, Te and thus X . The electron 

temperature was estimated from the formulation: 

Te = 1.16 x 104 (AVd/Aln F) (5.4.1)
 

where r is a nondimensional current (25)" conducted by the double probe.
 

The values of n were then determined from the relationship;

e 

n = 4J/eU (5.4.2) 

where
 

J =2 k Te (A I/AV)v=o/Ase (5.4.3)
 

and
 

U (8 kT /T me)i2 (5.4.4)
 

Equation (5.4.3) expresses the current conducted to the probe in
 

terms of the slope of the current-voltage characteristic before saturation
 

is reached.
 

Table 3 presents a summary of the approximate magnitudes of Te,
 

ne' XD' and Xen, determined by using the method outlined above. Again,
 

the values presented are indicative of plasma within the glow discharge
 



Table 3: Approximate Properties in the Static Discharge Plasma
 

Scaled 

ALT 


90 


80 


70 


Axial Displacement 

from center of electrode 


axis
 
y= cm 

1 


2 


3 


4 


1 


2 


3 


1 


2 


T. 

I 

3000K
 

Tn
 

Te 

(0y) 

1160 
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1857 
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n 

-
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1.04 x 104 


6.7 x 103 


5.25 x 103 


3.08 x 103 


1.23 x 103 


5.8 x 102 


1.28 x 101 


1.17 x 102 


8.08 x 101 


(mm) 


6.51 


7.49 


7.36 


9.06 


2.4 


2.4 


17.3 


39.5 


46.8 


e-n 
(mm) 

2.6 

2.8 

3.13 

3.48 

0.442 

00 
4:­

0.571 

0.551 

0.141 

0.163 
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chamber. No plasma properties were obtained outside the discharge
 

chamber and in the nozzle, y > 8.5 cm, because with the static plasma
 

the glow discharge chamber localized the plasma, resulting in indistin­

guishable probe signals at the nozzle exit.
 

The approximate magnitudes of n determined by Eq. (5.4.2) range
e 
4 -3 1 -3 

from 104 cm to 101 cm as the Langmuir probe is moved axially away 

from the center of the glow discharge.and as the source pressures are 

increased to model the 90, 80 and 70 km altitudes. The values of Te 

range from 103K to 102 oK; the values of XD are of the order 10 mm. 

The mean free path between electrons and neutral particles are also 

presented in Table 3 to indicate the plasma-probe interaction domain. 

Table 4 summarizes the relationships between rp, Xe- n , and the 

approximately determined XD" The operational regimes as outlined by
 

Chung et al., (7) for the double Langmuir probe in the static glow
 

discharge source plasma were concluded to be: collisionless
 

n
>
(D Ae-n >> rp) at 90 km, transitional (AD > Ae- z rp) at 80 km and
 

70 km.
 

The approximate evaluation of the static source plasma has
 

indicated the relative magnitudes of As-n, Te, ne and AD' The
 

standard collisionless double probe analysis (25) used to evaluate the
 

data gives the appropriate operational domains. As indicated by the
 

data the simulated 90 km altitude is collisionless while the 80 km and
 

70 km altitudes are transitional. Exact methods for evaluating double
 

Langmuir probe data will now be applied to the data.
 



Table 4: Plasma-Probe-Interaction for Static Source Plasma 
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< 
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(mm) 

0.19 

0.05 
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p 
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The most widely accepted and experimentally verified theory for
 

cylindrical collisionless probes was formulated by Laframboise (17).
 

The exact value of n in the scaled 90 km collisionless regime was
 

obtained from a reported application of this theory; using the ion
 

saturation current at the "knee" of the current-voltage characteristic
 

by (48),
 

ne JJ [2 mi/k Tj 1/2 / p e As (5.4.5) 

where
 

ap = f (rp/A D ' Ti/T ) (5.4.6)e


and J. is the ion saturation current. A is the surface area of the
 
1 S 

probe, V is the plasma potential and m. and m are the mass of the
 p . e 

ion and electron, respectively. From Laframboise (17), for
 

I 2.5. 

form to simplify the data reduction process, and the electron number 

density was determined by the formulation 

Ti/Te 0, rp/A D 0, ap Eq. 5.4.5 was arranged in diagnostic
 

[27 mi/kTe 1/2(5.4.7)
 
n - (2.5) e A lI
 

S 
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In the collisionless regime at 90 km, the electron temperature, 

Te, was determined from the slope of the logarithm of the electron 

current, i , plotted as a function of the applied probe potential, Vd. 

This technique was outlined by Johnson and Malter (25) for cylindrical 

double Langmuir probes, and has been experimentally verified by microwave 

techniques as reported by Graf (48). The values of T were determined
 e 

by
 

5.in 

T= e ___ 

AV (5.4.8)

i
A
k
e 


where i is the electron current collected by the probe. For a
 
e 

double Langmuir probe Eq. (5.4.8) is presented in diagnostic form
 

by Eq. (5.4.1).
 

The exact values of n and T obtained in the collisionless
 
e e 

plasma regime at 90 km are presented in Table 5 at the end of this 

section. These values were obtained at probe positions varying from 

S= 1 cm to y = 4 cm from the center of the source discharge. Values 

6 -i3 3 -3

of ne range from 3.98 x 10 cm to 8.9 x 10 cm , respectively. The 

values of Te range from 1160 OK to 669 OK. Table 5 also presents 

desired values of XD and Xe-n; when these are compared with the probe 

size, r = 0.127, reconfirm the collisionless and transitional plasma-P 

probe operation.
 

In the transitional condition at-scaled 70 km'and'80 km, the values
 

of n were obtained from the theory developed by Talbot and Chou (41).
e 

As discussed in section 5.3, this transitional probe theory has been
 

substantiated in laboratory experiments over a range of conditions
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from well-defined collisionless states into transitional plasma regimes.
 

The relation for n developed by Talbot and Chou was presented in
 

diagnostic form by Kirchhoff et al., (22), and is given by
 

-1 

(ne)Trans = (ne)Col Y (5.4.9)eis e
 

where (ne)Co is the value of ne evaluated under collisionless
 

-1i
 
conditions, y is defined-by Eq. (2) in Ref. (22), and j.,* is defined
 

by Eq. (5) also in Ref. (22).
 

The values of T were determined in the transitional regime at
e 

70 and 80 km by the diagnostic procedure formulated by Johnson and
 

Malter (25), Eq. (5.4.1). As pointed out by Kirchhoff et al., (22)
 

the electron temperature evaluated by Eq. (5.4.1) in the transitional
 

regime should be adjusted by a correction factor. The modificationi
 

however, is less than a few percent. Thus a double probe analysis may
 

be used to evaluate T in the transitional regime.
e 

Table 5 at the end of this section presents the values of ne, Te)
 

AD' and A obtained in the transitional plasma regime. The data
0' e-n
 

was obtained at probe positions from y = 1 cm to y = 3 cm frbm the
 

center of the plasma source. The electron number density ranged from
 

- 3 - 3
3.6 x 103 cm to 2.6 x 102 cm . The electron temperature varied
 

from 1857 0K to 6350 K. The magnitude of Te, as indicated by the
 

slope of the probe characteristics in the electron retarding region
 

can be teen to decrease.
 

With the exact values of n and T in the source plasma established,
e e 

values of AD'can also be calculated. Table 5 presents the exact values
 

of ne, Te and AD in the source plasma. As a point of interest,
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indication of the virtual surface area for particle collection at AD
 

can be made. In the scaled 90 km source plasma, the identification
 

of saturation from the "knee" in the probe current-voltage characteristic
 

was found to decrease as the probe was moved further from the plasma
 

source. This was felt to be due to the field perturbed region
 

increasing in thickness; AD can be seen to increase from 0.33 mm
 

to 5.34 mm. Also, as the source plasma pressure was increased, the
 

current-voltage characteristics evidenced a less definable saturation;
 

this could be due to the larger perturbed thickness approximated by
 

AD = 16.5 mm at 80 km and XD = 34.8 mm at 70 km. As pointed out by
 

Chung et al., (7) convective effects in the thick sheath regions are
 

relevant. The convection of ions and electrons into the large
 

perturbed region of the probe necessitates larger applied potentials
 

for saturation. As evidenced by the data the increased size df AD
 

does 	require higher values of VD '
 

Values of A which indicate the extent of particle collisions,
e-n
 

are presented in Table 5. The number of collisions between electrons
 

and neutral particles increases with pressure because the neutral
 

113 -3 115
 
density increases from 6.4 x 10 cm at 90 km to 1.61 x 10 at 70 km.
 

The values of Te remain of order 102K; this causes the collision
 

cross section of the electrons, ae, to also remain df the same order.
 

At 70'km, the resulting Ae-n is 0.130 mm which is an order of magnitude
 

smallet than in the collisionless 90 km regime, A = 2.6 mmJ The
 e-n
 

values of the non-dimensional probe potential, 9'd' and the degree of
 

ionization, e, are also presented in Table 5 for the source plasma.
 



Table 5: Properties in the Source Plasma Configuration 

ALT Te ne D xe-n ad 0 

(km) (0K) (cm ) (mm) (m-m) 

90 km y = I cm 1160 3.98 x 106 0.33 2.6 2.0 5.2 x 10-10 

y = 2 cm 987 4.32 x 105 0.932 2.8 2.18 1.1 x 10 -11 

y = 3 cm 748 5.70 x 104 2.28 3.13 2.32 9.3 x 10- 1 2 

y = 4 cm 669 8.9 x 103 5.34 3.48 2.34 6.5 x 10- 1 3 

80 km y = 1 cm 1857 2.6 x 103 16.5 0.442 2.25 3.8 x IC 14 

y = 2 cm 870 3.66 x 103 9.5 0.571 2.53 1.79 x 10- 1 4 

cm 105 340 x10 3- 16 
y = 3 cm 1005 3.40 x 3.35 0.551 2.19 3.96 x 10 ­ 1 

70 km y = I cm 830 2.6 x 102 34.8 0.130 2.1 7.27 x 10 - 16 

y = 2 cm 635 3.04 x 102 28.1 0.148 2.1 2.49 x 10- 1 6 



- 92 ­

5.4.3 Flowing Plasma Properties at the Test Station
 

As has been clearly established (7), flow can have a substantial
 

effect on the collection of particles by an electrostatic probe. Again,
 

the collection theories that have been developed were reviewed and
 

classified by Chung et al., (7), and it will be emphasized here that
 

most theories were developed to explain ion collection, not electron
 

collection which is of primary interest in the present work. However-,
 

since the n determination from double probes involves ion saturation
 

current, ion response must be given careful consideration in the double
 

probe 	data interpretation.
 

One basic point to be recognized is the fact that the electron
 

particle velocity, VD, induced by the applied (probe) electric field, is
 

the dominating velocity component in the electron collection process.
 

Specifically, in the present experiments the subsonic flow velocity
 

is 103 cm sec 
 and the supersonic flow velocity is 5 x 104 
cm sec 1
 

from the experimental field data and the drift velocity measurements
 

presented by McDaniel (30), it was estimated that VD was on the order
 

of 106 cm sec which is two orders of magnitude larger than the
 

supersonic flow velocity and three orders of magnitude larger than the
 

subsonic flow velocity. Also, from an analysis of thermal neutron, the
 

- I .
electron arithmetic or average velocity (30) is of order I x 107 cm sec
 

The thermal velocity estimate is four orders of magnitude larger than
 

the subsonic flow velocity and three orders of magnitude larger than
 

the supersonic flow velocity.
 

In this experiment, Ti z 300 0K and the ion thermal velocity estimate
 

-
(30) is 4 x 104 cm sec . The ion flow velocity is two orders of 
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magnitude smaller than the electron particle velocity, V . Clearly, 

the electron drift velocity is the dominant velocity component of the
 

plasma flow field of interest.
 

Since the particle dynamics are governed by the vector sum of the
 

imposed flow velocity, U, and drift velocity, D, and since the latter is
 

so dominant, there is generally no violation of-the basic assumptions
 

of static plasma theories. Therefore the probe theories specifically
 

formulated for static plasma diagnostics will be used to evaluate data
 

in flowing plasma when VD > > U.
 

The current voltage characteristics for the subsonic flow
 

configuration are shown in Figure 5.3. In general, the electron
 

saturation region is not as well defined as in stationary plasmas. A
 

decrease in the conducted probe current at the test station relative to
 

the static source could be expected; this decrease was noted to be
 

from about 10-8A to 10- 11A. Due to recombination and equilibration
 

processes, the values of Te and ne at the test station are expected
 

to be reduced relative to values in the discharge-hhamber.
 

Again, the Johnson-Malter double probe collisionless analysis (25)
 

was first applied to obtain an indication of the magnitude of ne' Te
 

and AD; Equations 5.4.1, 5.4.2 and 5.2.2 were utilized. Table 6
 

presents approximate plasma property values for the subsonic flow
 

configuration.
 

The relationship between the Langmuir probe size, rp, AD and
 

A again determines the specific plasma-probe operating domain.
 
e -n
 

Table 7 presents a summary of these values. The approximate analysis
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Figure 5.3 Double Probe Current-Voltage Characteristics 

for Subsonic Flow in the 70, 80 and 90 km Regimes 
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Table 6: 	 Approximate Plasma Properties with Subsonic Flow at Exit
 
Station
 

T. 300 0K
 

ALT Te ne AD Xe-n 

V oK cm mm mm 

90 707 6.04 x 103 6.66 3.14 

80 893 2.29 x 102 12.19 0.3088 

70 439 6.75 x 101 49.75 0.168 



Table 7: Plasma-Probe Interaction States in Subsonic Flowing Plasma 

y = 8.5 cm 

ALT D e-n n-n p PROBE STATE 

km mm mm mm MM 

90 6.66 > 3.14 > 0.20 > 0.127 Collisionless 

80 12.19 >> 0.3088 > 0.056 0.127 Transitional 

70 49.75 >> 0.168 0.008 < 0.127 Transitional 
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of the plasma data in the test flow indicates that in the subsonic flow
 

regime the plasma was collisionless (XD > X > r ) at 90 km, trans-
D e-n p
 

-n 
itional (AD >> Ae-n > rp) at 80 km, and transitional (AD >> Ae z r ) 

at 70 km. 

As discussed by Chung et al., (7) when all relevant Knudson numbers,
 

K >> 1, a cylindrical probe aligned with the flow direction will exhibit
 n
 

similar characteristics as a cylindrical probe titta static plasma. This
 

condition does not hold, however, when rp << 1. An "end-effect"
 
p D
 

condition occurs when the sheath radius becomes larger than the probe
 

radius. An aligned probe with the flowing plasma will collect particles
 

through the lateral and end surfaces of the sheath area. If the flow 

velocity, U >> (k T im.
I) or if the number of ion-ion collisions ise i 

not negligible, then a significant number of ions can reach the probe 

surface and cause a sharp peak in the measured ion current. As 

defined by Chung et al., (7),
 

[k Temi1]1/2ir 9£1 (5.4.10)
 

is the "end-effect" parameter; it is the following ratio: the product
 

of the lateral sheath dimension (length) £, and the transverse velocity,
 

1 1/2
(k T m l ) , to the product of the end sheath dimension (thickness),e 1 

AD' and the directed flow velocity, U. When T >> I the end-effect on 

a cylindrical probe is negligible. When T < I the ion current will be
 

greater than the orbital-motion limit value because of the increase in
 

ions reaching the probe surface through the end of the sheath. Also,
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the end-effect is associated with very small angular ranges, A 8, of
 

the probe and flow directions; around 6 = 00.
 

As discussed earlier the alignment of the Langmuir probe was
 

controlled in the test configuration by a traversing mechanisni and
 

micrometer. These devices were capable of accurately aligning the
 

- 3
probe with the flow direction to within 2.5 x 10 cm. Therefore, with
 

the probe directly aligned with the flow direction on ion current peak
 

could be expected to occur in the recorded current data if the ion
 

dynamic parameters are appropriate. Since the ne values are
 

determined from the ion saturation current, higher values of n
 

indicated data could be expected with an active end-effect flow
 

condition, than in the stationary plasma configuration.
 

In this experiment, the end effect parameters for the aligned
 

cylindrical Langmuir double probe in the subsonic flow configuration
 

2 - 3
 were considered. The values, r I range from 1.4 x 10- to 2.5 x 10 .
 

However, the end-effect parameter, T, ranges from 23.2 at 90 km to 2.43
 

at 70 km and thus conditions generally satisfy the requirement that
 

T > > I for the 90 km collisionless altitude of interest.
 

In the subsonic flow configuration an exact analysis of the plasma
 

properties was determined from the diagnostic theories previously
 

discussed in section 5.4.2. To reemphasize, the flow velocity, U, is
 

not the dominant velocity component, therefore, the constraints on the
 

basic static plasma theories have not been violated. Eqs.(5.4.5,
 

5.4.8 and 5.4.9) were used to evaluate the exact plasma properties in
 

the subsonic flow configuration. In 5.4.5, ap 2.7 was used for
P 

T /T. = 1.3, r/A 0. 
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Table 8 presents the results of an analysis of plasma properties
 

in the subsonic flow configuration; values for Te, ne, D' Xe-n' A
 

are given. The electron temperature ranges between 7070K and 8930K;
 

these values are comparable to the values obtained in the static
 

plasma configuration as presented in Table 5. The electron number
 

densities are 9.66 x 104 cm- 3 in the collisionless regime (90 km) and
 
1 -3 1 -3
 

-
9.48 x 101 cm 3 and 4.98 x 101 cm in the transitional regimes at
 

80 km and 70 km, respectively. These values indicate a reduction in ne'
 

due to recombination, of about one order of magnitude from the static
 

plasma values. The particle collection surface area, AD' can be seen
 

to be of the same order of magnitude as in the static plasma, but at
 

90 km, AD is approximately half as small in the subsonic case, whereas
 

at 80 km and 70 km, AD is approximately twice as large.
 

The current-voltage characteristics for the supersonic flow
 

configuration are shown in Figure 5.4. In general, the saturation
 

region is as well defined-as in subsonic flow but not as well defined
 

as in stationary plasma. The conducted probe current is further
 

reduced by one order of magnitude from the subsonic flow values.
 

The Johnson-Malter double probe collisionless analysis (25) was
 

again first applied to obtain an approximate indication of the
 

magnitude of ne, Te and AD; equations 5.4.1, 5.4.2 and 5.2.2 were
 

utilized. Table 9 presents approximate values for the supersonic flow
 

configurations. Table 10 presents a summary of the plasma-probe
 

operating domains. In the supersonic flow case the approximate double
 

probe analysis indicates that at 80 and 90 km the flow was collisionless
 

and transitional at 70 km.
 



Table 8: Plasma Properties in the Subsonic Flow Configuration
 

ALT Te n Xed
xD 


RIm mm
km oK cm-3 

90 707 9.66 x 104 3.14 1.668 2.3 

80 893 9.48 x 10 1 0.3088 59.84 2.6 

70 828 4.98 x 101 0.148 79.51 2.1 
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Table 9: Approximate Plasma Properties with Supersonic Flow 

at Exit Station 

T. z 300 0K 

Tn A A 

ALT Te e D) e-n 

km OK cm - 3 mm mm 

90 644 1.41 x 104 13.18 10.39 

80 476 1.95 x 102 30.4 2.11 

70 284 3.36 x 101 56.6 0.544 



Table 10: Plasma-Probe Interaction States in Supersonic Flowing Plasma 

y= 8.5 cm 

X Ar 

ALT D xe-n n-n p PROBE STATE 

km mn mm mm mm 

90 13.18 > 10.79 > 9.69 >> 0.127 Collisionless 

80 30.4 >> 2.11 > 0.27 > 0.127 Transitional 

70 56.6 >> 0.544 > 0.04 Z 0.127 Transitional 
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In supersonic flow, the characteristics of a shock wave formed
 

in front of an object depend upon the degree of rarefaction in the flow.
 

The Knudsen number specifies the rarefaction and is the parameter on
 

which the change from continuum behavior is based (32). *The values
 

of Knudsen number (K AXnn/rp ) in the supersonic flow in front of then 


Langmuir probe elements are: 76.2, 2.12, .314 for 90, 80 and 70 km
 

scaled condit-ions, respectively. The flow interaction can be concluded
 

to be free molecular at 90 km, transition at 80 km, and slip flow at
 

70 km, scaled. Generally, the thickness of the shock wave transition
 

region is on the order of one mean free path, Ann, and in continuum flow
 

(?n << rp) the shock stand-off distance is on the order of the body
 

radius, rp (35). However, for flow at fixed Mach number, or Knudsen
 

number increases, the thickness (6 ) of the shock transition region
 

increases and the shock position (A) forward of the body moves farther
 

away from the body. Specifically, following McKenna (49), for
 

-2 0-2 
 1

10 < Kn < 100,6s = 5 Xnn' and for 10 < Kn < 10 A Z 5 rB + 2 Ann 

Accordingly at the scaled 90 km,A z 20 mm while A = 13.18 mm; at 80 km, 

A Z .60 mm and AD = 30.4 mm; at 70 km, A = .22 mm and AD = 56.6 mm. 

Since the extrapolation at 90 km is not precise, it can be approximated
 

at all conditions that the shock lies within the collecting surface and 

should not perturb the particle collection process. Accordingly, the 

calculation of free stream plasma conditions will be made assuming that 

temperature and density jumps occur in standard fashion across a shock 

wave, before particles reach the collecting surface. With a shock wave 

at M = 2.0, it can be presumed that it does not create further ioniza­

tion in the plasma. The probe response is taken to represent -the 
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M = 0.56 subsonic flow behind the shock, and calculation to account 

for compression and heating by the shock wave were necessary to obtain
 

correct free stream properties.
 

The end-effect on the Langmuir double probe in the supersonic
 

flow configuration must be considered. Values for the end-effect
 

parameter,T , range from 0.046 at 90 km to 0.30 at 70 km. Also, the
 

-
parameter-, rp XD << 1, ranged from 2.24 x 10 to 9.6 x 10 . There­

fore, values of ne indicative data must be examined for enhanced currents
 

in this end-influenced flow condition as in the stationary plasma
 

configuration. When the detailed discussion in Hester and Sonin's work
 

(50 is considered, it can be seen that for large values of r there is
 

enhancement of collected ion current. However, an examination of the
 

results presented also indicate that for values of r << 1, there is
 

also no enhancement. Intuitively, this can be understood on the basis
 

of the fact that short length sheaths, even though thick, will have
 

little ability to alter ion trajectories and so gather larger numbers
 

of ions. In the present experiments with r = .046 at 90 km, the
 

one relevant collisionless state, there would appear to be little
 

likelihood of enhanced collection, and it will not be considered in
 

detail here.
 

Table 11 presents the values of Te, ne and XD calculated for
 

conditions in the supersonic flow configuration. The exact values of
 

T and n were determined by the appropriate diagnostic theory as
 
e e 

discussed in section 5.4.2. In the collisionless regimes ne = 1.04 x 

cm-3 and ne = 5.26 x 40 cm- 3 at 90 and 80 km, respectively. In the 

trnasitional regime at 70 kin, n = 7.8 cm -3 value of ne at.The 




Table 11: Plasma Properties in the Supersonic Flow Configuration 

ALT Te - e D e-n 9d 

km OK cm-3 M M 

90 340 2.91 x 103 6.66 14.0 1.9 

80 269 5.26 x 101 44.10 2.7 3.6 

70 268 7.8 114.67 0.707 4.3 

0 
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70 km is above the 80 km value due to the larger anode employed in the
 

scaled 70 km test; this was done so relevant values of n would be
 
e 

obtained. These values indicate a reduction in n from the static
 

plasma, due to recombination, of about two orders of magnitude. The
 

values of T were 3400K, 269°K and 268 0K for the 90, 80 and 70 km
e 

conditions respectively.
 

The double Langmuir probe data presented and analyzed above will
 

be compared with the blunt probe data to evaluate the blunt probe's
 

operation and the analytical procedures. However, the double Langmuir
 

probe reduced data will first be compared with other experiments.
 

'Figure 5.5 presents a comparison of data obtained from this experiment
 

and the work by Dunn and Lordi (11) with the theoretical prediction in
 

the orbital-motion-limit (collisionless regime) by Laframboise (17) for
 

specific values of Debye ratio, r A and nondimensional current
 
p D
 

density,
 

((k Te) (2ni)-1)1/2)
Ji (2wrZ)-I (e ne 


The work by Dunn and Lordi was conducted using single probes in nitrogen
 

with Debye ratios about two orders of magnitude larger than the values
 

obtained in this scaled D-region flow experiment. Hester and Sonin
 

(50) indicated these data needed reduction for end flow enhancement.
 

The figure shows that the transitional data falls further away from
 

the theoretical values, while the collisionless data lies close to
 

Laframboise's prediction. It can be seen, therefore, that the
 

Langmuir probe data is relatively consistent with theory and experi­

mental data obtained in other works.
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Figure 5.5 Comparison of Langnuir Probe Data with Thebry for Collisionless Regime 
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5.4.4 	Indicated Extent of Recombination of the Plasma in the
 

Flow from Source to Test Station
 

Considering the loss of electrons and ions due to recombination,
 

it can 	be formulated (51) that
 

dn. dn

1 e nn (5.4.11) 

dt, dt e 

Since n. = ne this can be integrated to give1 e 

a_ -L [u - .] 	 (5.4.12)6 e n eo 

On that basis, an experimental value of the recombination coefficient,
 

(a) EXP, can be computed by estimating the electron density in the
 

glow source, the electron density in the test jet, and the time for the
 

particles to flow between the two. Table 12 presents the values of
 

recombination coefficient determined using Eq. (5.4.12). The values
 

of the recombination coefficient listed are orders of magnitude higher
 

than recombination coefficients reported in classical studies (52-55)
 

6 3
with short period quenching behavior (a = 1.8 x 10- cm sec for N2
 

at 9 Torr). One physical difference here is the much longer time
 

involved in the flow from source to test station; also, there is
 

considerable contact of plasma with the wall during the flow passage.
 

The magnitude of the recombination coefficients does seem to
 

indicate that dissociative recombination (53) is the predominant loss
 

process. It should be noted Kasner and Biondi (54) have measured
 
-6


recombination coefficients in nitrogen on the order of i0 cm3 sec -1
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Table 12: Recombination Coefficients Indicated for the Flowing Plasma 

ALT asub asup 

km cm3/sec - I cm3/sec - I 

90 4.3 x 10­6 2.28 x 10­3 

80 9.2 x 10 - 5 6.66 x 10 ­3 

70 1.1 x 10- 4 2.26 x 10 ­ 3 
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They used microwave, mass spectrometric, and optical techniques to
 

study the recombination rates in the afterglow of a microwave discharge.
 

These researchers point out that such high values of a can only be
 

attributed to the process of dissociative recombination between
 

molecular ions and electrons in the weakly ionized plasma. In such
 

a process a radiationless transition occurs in molecules; the
 

molecules gain kinetic energy from their mutual repulsive forces
 

making the neutralization process permanent (55). The time of the
 

10-3 
microwave discharge was only on the order of sec. Recombination
 
3 -1
 

-
coefficients greater than 10 6 cm sec could be recorded for longer
 

discharge times after excitation of the reactions between the species.
 

5.5 	Evaluation of Plasma Properties from Blunt Electrostatic
 
Probe Data and Comparison with Langmuir Probe Results
 

5.5.1 Introduction
 

The Langmuir double probe was used to obtain reference plasma
 

properties in the scaled-D-region environment. These results establish
 

reference conditions in the plasma at the modeled 70, 80 and 90 km
 

regimes. Insertion of the blunt probe into the presumably known
 

plasma environment will serve to indicate the validity of the blunt
 

probe's operation and basic theory.
 

At present, blunt probe theories for the continuum regime have
 

been developed by Lam (56), Touryan and Chung (57), Hoult (38), Sonin
 

(19) and Lai (2). The theories formulated by Lam, and Touryan and
 

Chung, however, generally are not valid in D-region probe flows
 

because the assumption X r « R in their theory is not satisfied.
 

Hoult's ion collection theory assumes that the charged particle density
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in the plasma is low enough that the applied electric field of the probe
 

dominates the space charge electric field. The path of the attracted
 

particles in the theory is controlled by convection until very near
 

the probe surface where diffusion governs the dynamics of the particles.
 

Sonin's theory extended the theory developed by Hoult to include
 

supersonic moving probes. Sonin's ion collection theory is equivalent
 

to Hoult's theory in the D-region of the ionosphere because the strong
 

field condition, outlined'in the theory, is satisfied throughout the
 

D-region (2). Sonin accounted for convection by assuming that at
 

large Reynolds numbers, Rn, the flow separates into two regions. In
 

the outer inviscid region, the particle concentrations remain,constant,
 

while in the very near field of the probe a thin (6 << D ) boundary
 

layer exists. At the probe surface, the velocity and concentration of
 

the particles falls to zero. In Sonin's theory the electric field is
 

constant from the probe surface to the ambient plasma. It is therefore
 

observed that Hoult's theory-assumes a very small perturbed region
 

(diffusion layer), while Sonin's theory does not include any perturbed
 

region outside the relatively thin boundary layer. In the absence of
 

any sheath region the electric field extends far from the probe
 

surface, but the collection of particles is dominated by convection
 

until near the probe surface. For a positive biased probe in a
 

continuum regime, however, the electron's high mobility and small mass
 

will result in an effective collecting surface at a large distance from
 

the probe surface; within this region the field induced velocities will
 

dominate and an analysis completely different from Hoult's and Sonin's
 

is necessary.
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The theory outlined by Lai (2) is an analysis of electron
 

collection for blunt probes in the continuum regime of the D-region.
 

This theory was developed for subsonic probes and is based on a
 

dominant mobility concept. Starting at the probe surface, the probe's
 

field of influence is separated into the diffusion layer, mobility
 

layer and the convection and mobility region. When the electron drift
 

velocity (VD ) is found to dominate the imposed flow velocity (U) and
 

electron thermal velocity (VT), the perturbed thickness (particle ,
 

collection layer) is determined by using an analysis for the static
 

probe. The static probe analysis is reasoned to be valid when VD >> U,
 

because the magnitude of the electron motion is the vector sum of U and
 

VD. Therefore, although this probe theory was outlined for subsonic
 

probes, it can also be useful for supersonic flow configurations.
 

The blunt electrostatic probe electron collection theory (2) for
 

subsonic flowing plasma is based on a dominant mobility concept in
 

the continuum particle collection regime. The probe's field of
 

influence is separated into the diffusion layer, mobility layer, and
 

the convection and mobility region; these regions are shown in Figure
 

5.6 (2). For a positively biased probe, the electrons in the ambient
 

plasma (outer region) first encounter the influence of the probe at
 

the outer boundary of the convection and mobility region, YA" In the
 

present flow experiment, the electron drift velocity, VD' dominates the
 

imposed flow velocity, U, and electron thermal velocity, V so the
 

region, in theory, where convection would dominate is irrelevant. The
 

mobility layer, with outer boundary at yB' is the next inner layer and
 

is that region where the dynamics of the electrons are controlled by
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the electric field of the probe. The electrons.enter at yB with two
 

velocity components, VD and U, and the magnitude of VD relation to U
 

enables the mobility processes to dominate the motion and path of
 

the electrons. The region closest to the prohe'surfaceis the diffusion
 

layer, with outer boundary at rpc, where both electron diffusion and
 

mobility are dominant processes. The diffusion layer is relatively
 

thin compared to yB and allows a uniform and constant electric field
 

1
to form. Within rp , there is an exponential decay of electron
 

concentration because of the proximity to the probe surface. However,
 

there is also a simultaneous increase in density from the ambient plasma
 

due to the mobility process. Thus, for a specific probe potential and'
 

operating pressure the combined effect of diffusion and mobility
 

processes leaves the electron number density in the diffusion layer a
 

constant.
 

Again, the primary interest here is to determine electron density
 

from the electron collection regime of the blunt probe characteristic.
 

The Debye length, XD' can be used only as an approximate indicator of
 

the position of an effective collection surface for a probe of an
 

effective collection surface for a probe in the test plasma, because
 

the criterion for its validity, p << 1, is not satisfied. The theory
 

presented by Lai (2) develops a different criterion for a scaling length
 

indicative of the sphere of influence of the blunt probe; in that work,
 

YO was specified as a static plasma perturbed radius (boundary of a
 

sheath region). For a moving probe, yB' was derived; generally, y0
 

and yB are comparable for low values of velocity. Further, the
 

dominance of drift velocity, V0 , over flow velocity, U, enables y0 , YB
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to be used as the position of the surface where the particle flux to 

the probe is determined. The formulation of y0 , 
TB by Lai, however, was 

developed for a particle collection radius much larger than the radius 

of the probe, b >> rp. If yo is approximately the same otder as the 

radius of the probe, y o rp* an alteration of Lai's formulation of yO 

for the continuum regimes is necessary.
 

The perturbed thickness for yov rp was formulated from the
 

electric field distribution on the surface of a flat, circular, conducting
 

collector disc modeling the probe. The collector disc is an equipotential
 

surface where the charge distribution is symmetric about the axis and in
 

the plane containing the disc. The electric field distribution for a
 

circular disc where the probe radius is the same order as the radius of
 

interest is (2)
 

4= 2 r2+ (5.5.1) 

where r is the radial location of a surface of interest, Vd is the
 

applied probe potential, and rP is the radius of the probe electrode.
 

Near the surface of the probe, r << rP and the electric field is
 

= 2Vd (5.5.2) 

p Trr
 

From conservation of flux between some collection surface A0 at radius r0,
 

and the surface of particle collection on the probe, the electric
 

field due to the probe is expressed by
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ACO
 

'D = COL (5.5.3)p AO 

where A0 is the area of the collection surface displaced from the
 
2 

probe, and A = r 0 L is the area of the collector disc (probe 

surface). Combining Eqs. (5.5.3, 5.5.2 and 5.5.1) the collection area
 

at the boundary of the perturbed region is determined by
 

r 2 +r21 
AO ACOL 0r :p (5.5.4) 

Dividing Eq. (5.5.3) by the static pressure, p, and substituting Eq.
 

(5.5.4),
 

[ P=)r2 (5.5.5)
 

0 p
 
-2 -i 

Following Lai (2), with 0/p = 4 x 10 - 2 volt cm mm Hg at r0 = YO for o 

electron collection on nitrogen gas,
 

2
Y = 25 r2 ( ) _ r , (cgs) (5.5.6) 

The data obtained by the blunt probe in the static and flow
 

regimes were analyzed by first considering the relationship between the
 

collected particle mean free path, As-n' and the blunt probe size, rp.
 

The parameters that categorize collisions between charged and neutral
 

particles enable the plasma-probe interaction states to be specified.
 

Analyses appropriate for these states were then applied.
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The approximate magnitude of the mean free paths between electron­

neutral, e-n' ion-neutral, i-n' and neutral-neutral, XnAn , particles,
 

specified in section 5.4 and as listed in Table 2, were compared with 

the blunt probe size, r = 0.5 mm. With these approximate values, itP
 

was determined that for electron collection in the static and subsonic
 

pamreie e-n p e-n p
plasma regime, Ae-n > r (collisionless) at 90 km, and A > r
 

In the supersonic configuration
(continuum) at 80 and 70 km. 


Ae-n > rp (collisionless).at 90 and 80 km and Ae-n p (continuum)
< r 


at 70 km.
 

5.5.2 Static Source Plasma
 

In the static plasma configuration, current-voltage data was
 

obtained with the blunt probe.positioned similar to the Langmuir probe.
 

The blunt probe was found to conduct measurable current at locations,
 

y = I cm to y = 4 cm from the center of the plasma source, within the
 

glow discharge chamber.
 

Figure 5.7 represents typical current voltage characteristics for
 

ion and electron collection by the blunt probe in the static continuum
 

(70 km) plasma case. It should be noted that the extent of charge
 

particle saturation decreases as the probe is moved further away from
 

the plasma source, similar to behavior indicated by the Langmuir probe.
 

Figure 5.8 shows the electron collection, current-voltage charac­

teristics for the pressure regimes studied in the static plasma configura­

tion. The blunt probe indicates more pronounced saturation effects with
 

increasing pressure; this trend is opposite to that observed with the
 

This behavior could occur here because of the decreasing
Langmuir probe. 
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thickness of the perturbed region yO, which results from the increasing
 

pressure. Also, an increased glow discharge potential was required to
 

maintain the plasma at higher test pressure (500 V at the 90 km regime
 

to 1500 V at the 70 km regime). It should be noted that the electron
 

current conducted by the blunt probe in the 90 km regime was on the order
 

- 9
of 10 A, the same order of magnitude as the current to the Langmuir
 

probe in the 90 km regime. This indicates that ¥0 should also be the
 

same order of magnitude as A D In the 80 and 70 km regimes, electron
 

-
current, i was on the order of 10 A, a reduction by two orders of
 

magnitude from the current conducted by the Langmuir probe at these
 

conditions, thus indicating a smaller y0 for the blunt probe in the
 

static continuum regime than AD.
 

The raw data obtained in the static plasma configuration with the
 

blunt probe allows the plasma and sheath operational domains to be 

identified: yO > Ae-n >O = 9.44 mm) or collisionless at 90 km; 

at 80 km (yO = 4.18 mm), and 70 km (yO = 1.51 mm), y0 > rp > e-n' or 

continuum.
 

In the continuum pressure regime (80 and 70 km) with static plasma,
 

the values of n were determined by employing the probe analysis presented
 

by Lai (2). The analysis is based on the formulation of the perturbed
 

thickness, yO, appropriate when y > r p, based on the above estimates.
 

Lai's formulation (Eq. 4.3.12), n was determined from
e 

n = 1.29xl0 1 4 P AVe SAT (5.5.7) 
e 
 AVp1 
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In the collisionless, static plasma regime (90 km) the diffusion
 

layer concept, as discussed by Lai (2) is not relevant because rp <
 

The absence of collisions within the very near field of the
 
e-n
 

blunt probe, therefore, requires the use of a theory, such as Child's-


Langmuir (47), to evaluate data with a collisionless surface layer. A
 

theory such as Laframboise (17) for the orbital-motion-limit in the
 

collisionless regime does not apply for the blunt probes either, because
 

particle orbits do not form due to the probe's geometry (33); for a
 

constant operating pressure and discharge potential the effective
 

The blunt probe data with
collection area of the probe is a constant. 

YO > e-n > r was therefore evaluated by the Child's-Langmuir relation 

(47), given by 

+S )-1nO (*:AT (e ((5.5.8)~)~ 

where neo is the electron number density in the undisturbed plasma,
 

(j/AVA) is the electron current slope after saturation, and ye is
 
p SATe
 

the electron current density. The Child's-Langmuir relation is valid
 

for Vp e (kTe)-I >> l and A > r . The electron number density was
 p ee-n p
 

determined by the diagnostic form of Eq.- (5.5.8) by
 

4 s 12(5.5.9)A~e' r- +ip] 
n0 1.42 x10 (14AV )SAT 1/(5.9
 

where AJe(AVp)-iSAT is the slope of the electron saturation region 

from the current-voltage characteristic and 4= eVp(kTe)-1 the 
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nondimensional plasma potential. The electron temperature was determined
 

by Eq. (5.4.1) using the double Langmuir probe data. The values of neo
 

and Te for the static case are presented in Table 13.
 

5.5.3 Flowing Plasma at Test Station
 

The current voltage data in the flow configuration was obtained
 

with the blunt probe at locations similar to those previously specified
 

for the Langmuir probe. The probe was positioned at y = 8.5 cm from the
 

center of the plasma source on the flow axis, at the exit plane of the
 

nozzles.
 

For the subsonic flow configuration, Figure 5.9 shows the electron
 

collection, current-voltage characteristics. As in the static plasma
 

case, there is a continual increase in the degree of saturation with
 

pressure. With flow, Te reduces to 707
0K at 90 km, 8930K at 80 km and
 

828 K at 70 km, which is an order of magnitude reduction below static
 

plasma values- The values of Te were determined from the Langmuir probe
 

by Eq. (5.4.1). It was found that yO is about the same magnitude as
 

in the static plasma, which would be expected in a region where
 

VD >> U. Also, at 90 km, y is about 3.85 mm, which is as large as the
 

Langmuir probe particle collection dimension, D; at 80 and 70 km, yO
 

is 1.41 mm and 0.40 mm, respectively, which is an order of magnitude
 

smaller than yD" The values of y and yB' however, are two orders of
 

magnitude smaller than the values Lai calculated due to the flow scaling
 

by two orders of magnitude.
 



Table 13: Blunt Probe - Static Plasma Properties 

Tn x dY 

ALT e e e-n YO 

(km) (0 ( cm - 3 ) (mm) (Mm) 

90 1160 3.8 x 105 2.600 1.74 9.40 

80 1857 iL47 x 104 0.442 0.66 4.18 

70 830 2.8 x 104 0.130 1.40 1.51 

4­



- 125 ­

3.2 

2.8 

y= 8.5 cm 

2.4 

2.0 90 km 

1.6 

1.2 

•H 0.8 

0.4 
00 

0 70 km 

0 

Figure 5.9 

0.01 0.02 0.03 0.04- 0.05 0.06 

Vd 

Blunt Probe Electron Current-Voltage Characteristics 
for Subsonic Flow in the 70, 80 and 90 km Regimes 



- 126 -

From the subsonic, blunt probe raw data, the operational regimes
 

for the probe were determined. It was found that at the 90 km regime
 

(continuum),
YO > Ae-n > r (collisionless), at 80 km y > rp > 

and at the 70 km regime YO > rp >A (continuum). 

In the subsonic flow configuration at the 90 km test regime, the 

= 3.85 mm,­operational plasma and sheath domain (yo > e-n> r), y 


indicates the existance of a collisionless surface layer. The value
 

of n was obtained by the Child's-Langmuir relation (47). Eq. (5.5.9)
 
14 -3
 

was used to obtain a value of n; a value n 8.99 x 1 cm was
 

obtained.
 

were,
In the continuum regimes at 80 and 70 km the values of ne 


Lai's formulation of
determined from Lai's (2) theory (Eq. 4.3.52). 


Eq. 4.3.52 was reformulated for the blunt probe in the 80 and 70 km test
 

regimes. For the 80 km regime the value of ne was determined by
 

e 4.03 E SAT 
en 4.03x10 14 p] ]01 (5.5.10) 

where PE is the static test pressure at the exit plane of the flow
 

nozzle (y = 8.5 cm) and (AJe/AVp)SAT is the electron current slope
 

after saturation. In the 70 km regime n was determined by
 

F (5.5.11)ne= 3.05 x 101eo tjS 


-ee 

This data is presented in Table 15, at the end of this section. The
 

values of ne obtained by the blunt probe are relatively the same
 

magnitude as the values obtained by the Langmuir probe.
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In the supersonic flow configuration, a detached shock wave can
 

be expected to form in front-of the blunt probe. The-values of Knudsen
 

numbers (K Xnn/rp) in the supersonic flow in front of the blunt probe
n 


collection surface are: 19.38, 0.54 and 0.08 for 90, 80 and 70 km scaled
 

conditions, respectively. The flow interaction can be concluded to be
 

free molecular at 90 km, and slip flow at 80 and 70 km, scaled. As
 

discussed in section 5.4.3, free stream plasma conditions will be
 

calculated assuming that temperature and density jumps occur in standard
 

fashion across a shock wave, before particles reach the collection surface.
 

Calculations to account for compression and heating by the shock wave
 

(MN = 2.0) were necessary to obtain correct free stream properties.
 

Figure 5.10 shows the electron collection, current-voltage charac­

teristics for the supersonic flow configuration. The saturation voltage
 

continues to increase with pressure, while the magnitude of the conducted
 

current continues to decrease below subsonic levels. T was determined
 e 

from Eq. (5.4.1). The values of Te are: 34&Kat 90 km, 269 0K at 80 km
 

and 2680K at 70 km.
 

It was found from the data that the magnitude of y is about twice
 

that in the subsonic flow case but an order of magnitude smaller than
 

AD for the Langmuir probe. As in the subsonic flow configuration, the
 

reduction in magnitude of the conducted probe current appears related
 

to the smaller sheath or field affected, mobility region. In the
 

subsonic flow, yB was about twice the magnitude of yO, whereas in the
 

supersonic flow configuration yB is 1.64 mm at 90 km, 0.62 mm at 80 km,
 

and 0.27 mm at 70 km; these values are about one-third the size of yo.
 

In the 70 km regime rpfdI is 0.12 mm, which is one-third that in the
 

subsonic flow case.
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The operational domains for the blunt probe in the supersonic flow
 

configuration were determined from the data, and provide for the
 

specification of the collisionless or continuum probe theories. At the 

90 km regime y > rp (collisionless), at 80 km X > Y0 > r90kseie%-n p 	 e-n 0 p
 

(collisionless) and at the 70 km y0 > r > Ai (continuum). Thep e-n
 

operational domains for the flow and static configurations are summarized
 

in Table 14.
 

The values of ne in the collisionless test regimes at 90 and 80 km
 

were determined from the Child's-Langmuir relation (47). Eq. (5.5.9)
 

is the diagnostic form of the Child's Langmuir relation Eq. (5.5.8)
 

used 	to evaluate the collisionless states. The values of n in the
e 

continuum regime (70 km) were determined from a reformulation of Lai's
 

(2) theory Eq. (4.3.52) and is given by
 

ne = 5.47 x 1014 PE LAVe 	 (5.5.12)
 

The values of ne are presented in Table 15, at the end of this section.
 

Table 15 is a summary of the properties of plasma in the scaled
 

flow facility obtained with the scaled blunt probe; it is useful for
 

comparison with the properties obtained with the Langmuir probe.
 

5.6 	 Comparison of Electron Densities in the Scaled Laboratory Experi­
ment as Indicated by Various Blunt Probe Theories
 

The values of the electron densities in the scaled plasma flow
 

laboratory experiment were evaluated from double probe and blunt probe
 

data using available theories. The blunt probe particle collection
 

theories reported by Lai (2) and Mitchell (58), Hale and Hoult (4) have not
 



Table 14: Operational Regimes for the Scaled Blunt Probe 

ALT STATIC PLASMA SUBSONIC FLOW SUPERSONIC FLOW 

(km) YO xe-n 

(mm) (mm) 

rp 

(mm) 

YO 

(mm) 

xe-n 

(mm) 

rp 

(mm) 

YO 

(mm) 

xe-n 

(mn) 

.rp 

(mm) 

90 

Collisionless 
9.40 > 2.600 > 0.50 

Collisionless 
3.85 > 3.14 > 0.50 

Collisionless 
5.64 < 10.80 > 0.50 

80 4.18 > 
Continuum 

0.442 < 0.50 
Continuum 

1.41 > 0,31 < 0.50 
Collisionless 

2.91 > 2.11 > 0.50 

70 

Continuum 
1.51,> 0.139 < 0.50 

Continuum 
0.40 > 0.17 < 0.50 1.5 

Continuum 
> 0.54 z 0.50 

U) 

C 



Table 15: Blunt Probe - Plasma Properties 

STATIC 
PLASMA 

T 
e 

0K 

n e 
e 

(cm­ 3) 
e-n 
(mm) 

p 
YO 

(mm) 

B 

(mm) 

-1 
rp'p 

(mm) 

90 km 1160 3.8 x 105 2.600 1.74 9.40 

80 km 1857 1.46 x 104 0.442 1.66 4.18 0.30 

70 km 830 2.80 x 104 0.139 1.40 1.51 0.36 

SUBSONIC 
FLOW 

90 km 707 8.99 x 104 3.14 1.65 3.85 8.72 

80 km 893 7.66 x 103 0.31 1.40 1.41 3.14 0.36 

70 km 828 1.62 x 103 0.17 1,43 0.40 1.43 0.35 

SUPERSONIC 
FLOW 

90 km 664 5.18 x 103 10.80 3.10 5.64 1.64 

80 km 476 9.6 x 102 2.11 3.30 2.95 0.62 

70 km 284 1.34 x 103 0.54 3.18 1.57 0.27 0.12 
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as yet, been tested or substantiated by controlled laboratory experiments.
 

Electrostatic probe response using a double Langmuir probe 
and a
 

scaled blunt probe in static and flowing plasmas was studied 
and allows
 

for an expetimental comparison of the indications of number density
 

from the various probe theories formulated for D-region 
probe flows.
 

Lai's theory (2) was developed for continuum electron 
collection
 

by static and subsonic moving probes and presents an 
analysis of the
 

The Mitchell
 
several perturbed regimes adjacent to the probe's surface. 


(58), Hale and Hoult (4) theory has primarily been used 
to describe
 

indicate electron densities
ion particle collection but was also used to 


Mitchell calculated the particle
with rocket-borne probe data. 


concentration in the D-region from the data obtained by 
Hale's rocket­

borne blunt probes. The electron densities, ne' in the present experi­

ment without negative ions, are determined by
 

a- (5.6.1) 

e epe 

the electron conductivity.
where Ve is the electron mobility and a_ is 


In the collisionless regimes the response from the Langmuir 
double
 

in
 
probe was evaluated from the theory developed 

by Laframboise (17). 


the collisionless regime, the response from the blunt 
probe was
 

evaluated by a new application of the Child-Langmuir 
theoTy (47).
 

In the transition regimes electron densities were evaluated 
from
 

(22).

the particle collection theory formulated by Kirchhoff 

et al., 


Figure 5.11 presents a comparison of electron densities evaluated
 

with various particle collection theories in the subsonic flow 
configura­

tion; Figure 5.12 presents densities determined in the 
supersonic flow
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configuration. Generally, there are relatively small differences in 

indicated values of ne in the 90 km collisionless regime. The 

procedure used to determine particle concentrations from Laframboise's 

theory (17) for the double Langmuir probe, utilizes the electron­

retarding region of the probe's current-voltage characteristic. In
 

this region the electrons are absorbed by the probe while the ions are
 

repelled. In the Child-Langmuir theory (47) for the blunt probe, however,
 

the values of ne are determined from the slope of potentials above the
 

saturation of the probe characteristic. In such a model the dynamics
 

of the electrons are determined within the sheath. The electron.
 

current is collected by the continual collisionless flux of particles
 

through a constant area sheath at a boundary which increases in
 

thickness with increasing probe potential.
 

There are dissimilar indications of n e in the continuum regimes.
 

Under continuum test conditions with a blunt probe, there is a
 

relatively constant sheath thickness for a specific operating pressure.
 

As the applied blunt probe potential, Vd' is increased the collection
 

surface area generally remains constant. For the cylindrical double
 

probe, however, the sheath collection surface area continually increases
 

1/2

proportional to Vd (33).
 

The values of ne indicated for the supersonic flow configuration
 

are generally smaller in magnitude than concentrations obtained in the
 

subsonic flow configuration. Some differences may be due to the shock
 

wave which is presumed to form in front of both geometries of probes.
 

Shock compression would not only increase the density in the flow, but
 

also would increase the recombination rate between positive ions and
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electrons. While temperature jumps across shocks would appear, there
 

would only be recovery of lower initial temperatures due to expansion.
 

Any correction to the data to account for changes in density due to the
 

shock wave, cannot recover the loss of electrons from recombination.
 

Also, the position of a shock forward of the probe surface could be
 

outside any detached effective collecting surface, as shown in Figure
 

5.4, and cause extraneous effects in the particle collection process.
 

The electron density reduction method used by Mitchell (58), Hale
 

and Hoult (4), predicts densities that are generally one order of
 

magnitude higher than predicted by Lai (2) and one to three orders of
 

magnitude higher than predicted by the double probe diagnostic. These
 

results are not unexpected, because the theory developed by Mitchell (58),
 

Hale and Hoult (4) correctly models ion collection which takes place
 

close to the probe surface. This theory does not account for the
 

relatively thick "sheath" or perturbed region, which forms when
 

electrons are collected by a positive biased probe. Therefore, only an
 

analysis which includes the structure of a region with enhanced electron
 

activity sheath and accounts for the particle dynamics within this
 

perturbed region, can be expected to be valid for electron collection.
 

Lai's theory (2) appears to give better agreement with double probe
 

indications of electron density. However, it will be noted that some
 

double probe indications of electron density are anomalously low,
 

1- 2 -3
 
10 -10 cm , and their validity is questionable. 

The differences in the electron densities indicated by the various
 

probes and theories must be considered relative to some significant
 

factors. First, the theories to reduce double probe data never precisely
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matched the experimental conditions. The data shows that there were
 

few distinct, definable regimes of operation that are either collisionless,
 

transitional, or continuum. The general inability to apply a theory which
 

precisely fits the experiment, resulted in approximate analyses being
 

applied in the reduction procedures. Further, Laframboise (59) has
 

recently pointed out that the standard double probe method for
 

determining the value of the electron temperature, Te, will result in
 

an overestimation as the Debye length increases under continuum or
 

transitional plasma regimes. Laframboise discusses an improved theory
 

for determining the correct values of Te; such a theory should be
 

explored further. At the present time, the implications of Laframboise's
 

new theory have not, as yet, been fully explored. However, the indicated
 

values of Te that have been presented could be higher than more correct
 

values; such a situation would also imply higher densities for the
 

double probe.
 

Another influence on the differences in the evaluated magnitudes
 

of the electron densities relates to the detailed construction of the
 

blunt probe. The blunt probe's design did not precisely fit the
 

requirement of r rCOL' because of the large gap between the
 

guard ring and collection surface. If, however, rp = rCOL then the values
 

of ne would be four times smaller using Lai's theory (2) with the present
 

experiments.
 

In brief summary, it will be reemphasized that for the first time,
 

a series of controlled laboratory tests with ionospheric plasma was
 

conducted to examine electron collection by blunt probes. Several
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theories that had not been tested or verified under controlled conditions
 

were used to reduce electron density estimates from the data. The results
 

presented here show that, generally, the theoretical studies of particle
 

collection by electrostatic probes should be continued and improved
 

before the present experimental results can be satisfactorily resolved.
 



CHAPTER VI
 

CONCLUSION
 

6.1 	 Summary
 

Rocket-borne blunt probe flows have been simulated in a weakly
 

ionized plasma. A steady state plasma flow system adequately simulated
 

the electron temperatures and number densities indicative of the
 

D-region of the ionosphere. The equivalence of the flow parameters
 

(Mn, Rn and Kn) in the actual and simulated regimes were achieved by
 

scaling the neutral gas density and probe diameter over two orders of
 

magnitude. The glow discharge source plasma produced satisfactory
 

electron temperatures and densities. The control of these properties
 

was 	achieved by varying the electrode configurations in the discharge
 

chamber and by allowing relaxation of the cross flow from the discharge
 

chamber through a baffle system. Subsonic and supersonic flows were
 

produced to model the flight configurations of actual rocket-borne
 

probes through the ionosphere.
 

The electron collection theory outlined by Lai was specifically
 

considered. It was concluded that this theory, which was formulated
 

for subsonic and static blunt probes, appears to be valid for super­

sonic probes when the electron drift velocity dominates the imposed
 

flow velocity.
 

The laboratory data obtained from the scaled blunt probe were
 

reduced and compared with the Langmuir double probe predictions of n
 e 

in the subsonic and supersonic flow configuration. They were found to
 

be in mixed agreement. The electron densities indicated by tai's
 

theory were then compared with those indicated by the ion 
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collection theory of Mitchell, Hale, Hoult. It was found that these
 

reduction procedures resulted in electron densities that were one
 

order of magnitude or more higher than the densities evaluated by Lai's
 

electron collection theory. These results were not unexpected because
 

of the basic formulation of the ion theories, which do not account for
 

the relatively thick sheath formation when electrons are collected.
 

The recent development of a new theoretical formulation for deriving
 

the electron temperature in large Debye length, continuum-transitional,
 

plasmas is noted. While this work must be further explored, values of
 

T would be overestimated if this theory is shown to be substantiated.
e 

The work presented here is the first controlled laboratory test
 

for electron collection from ionospheric plasma. Further work is
 

requiredfor precise corroboration of electron collection theories by
 

electrostatic blunt probes.
 

6.2 	 Improvement of Plasma Discharge System for D-Region Probe Flow
 
Modeling
 

As an improved plasma discharge flow modeling system, the employment
 

of a cold-cathode discharge system along with the multiphase baffle and
 

flow nozzle arrangement would provide a means for obtaining low electron
 

-
temperatures (Te r 102 oK) and number densities (ne n 103 cm 
3 ) at the
 

test section in the experimental facility. A cold-cathode discharge
 

system is produced by using brush cathodes as the electrode configuration
 

(26). Brush cathodes produce a stable plasma discharge in the abnormal
 

glow region of the glow discharge (26). The negative glow typically
 

produced in laboratory plasmas by the usual glow discharge electrode
 

configuration, is generally too small to be of significance for
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diagnostic probing. However, if brush cathodes are employed the
 

resulting negative flow typically extends one or two orders of
 

magnitude further longitudinally than the normal cathode glow. Within
 

the negative glow region of the discharge there are no striations or
 

instabilities, which are usually associated with a glow discharge
 

plasmas. The negative glow plasma is a reliable means for attaining
 

desired, reproducible values of electron temperatures and number
 

densities.
 

Specifically, the employment of brush electrodes in a discharge
 

tube where its length to diameter ratio is about sic, is proposed.
 

Two brush cathodes located opposite to each other and one brush anode
 

positioned off-set from the center of the discharge tube between each
 

cathode is suggested. This arrangement would provide a uniform
 

electron gas in the energy range of 1 to 10 KV (26), and enable the
 

gas cross flow in the discharge chamber to remain long enough to reach
 

equilibrium with the entire volume of plasma before entering the baffle
 

system. The relatively long distance between the cathodes and anode
 

would require the operating discharge current to be maintained at
 

about 150 mA. This current is necessary to provide sufficient kinetic
 

energy to the ions for continued and sufficient ion bombardment at the
 

cathodes, such that electrons could attain energetic trajectories for
 

a uniform and concentrated discharge beam.
 

Persson (26) has used brush electrodes in a similar arrangement.
 

Helium was used as the test gas, and single collisionless Langmuir
 

probes were employed for diagnostic probing. The negative glow discharge
 

beam is a field-free plasma and was observed by Persson to fill the
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entire discharge.tube. Electron temperatures of order 102 oK were*
 

obtained in this experimental arrangement. It was found that the high
 

energy of the electrons in the discharge beam prohibit the beam from
 

interacting with the different plasma wave mechanisms. Energy only
 

associated with electrons released in ionization and recombination
 

processes is transmitted to the plasma, thus enabling low electron
 

temperatures.tempratresElectron densities of order 1012
Elctrn dnsiiesof rde 10 cm-3 were obtained and
 

are characteristic of negative glows produced in helium. The use of
 

multiphase baffles, however, in the pr6posed experimental arrangement
 

with air as the test gas, would reduce the densities sufficiently such
 

that characteristic D-region electron number densities would be
 

achieved.
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