985 research outputs found
Regularization and renormalization in effective field theories of the nucleon-nucleon interaction
Some form of nonperturbative regularization is necessary if effective field
theory treatments of the NN interaction are to yield finite answers. We discuss
various regularization schemes used in the literature. Two of these methods
involve formally iterating the divergent interaction and then regularizing and
renormalizing the resultant amplitude. Either a (sharp or smooth) cutoff can be
introduced, or dimensional regularization can be applied. We show that these
two methods yield different results after renormalization. Furthermore, if a
cutoff is used, the NN phase shift data cannot be reproduced if the cutoff is
taken to infinity. We also argue that the assumptions which allow the use of
dimensional regularization in perturbative EFT calculations are violated in
this problem. Another possibility is to introduce a regulator into the
potential before iteration and then keep the cutoff parameter finite. We argue
that this does not lead to a systematically-improvable NN interaction.Comment: 5 pages, LaTeX, uses espcrc1.sty, summary of talk given at the 15th
International Conference on Few-Body Problems in Physic
The potential of effective field theory in NN scattering
We study an effective field theory of interacting nucleons at distances much
greater than the pion's Compton wavelength. In this regime the NN potential is
conjectured to be the sum of a delta function and its derivatives. The question
we address is whether this sum can be consistently truncated at a given order
in the derivative expansion, and systematically improved by going to higher
orders. Regularizing the Lippmann-Schwinger equation using a cutoff we find
that the cutoff can be taken to infinity only if the effective range is
negative. A positive effective range---which occurs in nature---requires that
the cutoff be kept finite and below the scale of the physics which has been
integrated out, i.e. O(m_\pi). Comparison of cutoff schemes and dimensional
regularization reveals that the physical scattering amplitude is sensitive to
the choice of regulator. Moreover, we show that the presence of some regulator
scale, a feature absent in dimensional regularization, is essential if the
effective field theory of NN scattering is to be useful. We also show that one
can define a procedure where finite cutoff dependence in the scattering
amplitude is removed order by order in the effective potential. However, the
characteristic momentum in the problem is given by the cutoff, and not by the
external momentum. It follows that in the presence of a finite cutoff there is
no small parameter in the effective potential, and consequently no systematic
truncation of the derivative expansion can be made. We conclude that there is
no effective field theory of NN scattering with nucleons alone.Comment: 25 pages LaTeX, 3 figures (uses epsf
Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory
Properties of the proton and neutron are studied in partially-quenched chiral
perturbation theory at finite lattice spacing. Masses, magnetic moments, the
matrix elements of isovector twist-2 operators and axial-vector currents are
examined at the one-loop level in a double expansion in the light-quark masses
and the lattice spacing. This work will be useful in extrapolating the results
of simulations using Wilson valence and sea quarks, as well as simulations
using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe
Periodic orbit effects on conductance peak heights in a chaotic quantum dot
We study the effects of short-time classical dynamics on the distribution of
Coulomb blockade peak heights in a chaotic quantum dot. The location of one or
both leads relative to the short unstable orbits, as well as relative to the
symmetry lines, can have large effects on the moments and on the head and tail
of the conductance distribution. We study these effects analytically as a
function of the stability exponent of the orbits involved, and also numerically
using the stadium billiard as a model. The predicted behavior is robust,
depending only on the short-time behavior of the many-body quantum system, and
consequently insensitive to moderate-sized perturbations.Comment: 14 pages, including 6 figure
Hadronic Electromagnetic Properties at Finite Lattice Spacing
Electromagnetic properties of the octet mesons as well as the octet and
decuplet baryons are augmented in quenched and partially quenched chiral
perturbation theory to include O(a) corrections due to lattice discretization.
We present the results for the SU(3) flavor group in the isospin limit as well
as the results for SU(2) flavor with non-degenerate quarks. These corrections
will be useful for extrapolation of lattice calculations using Wilson valence
and sea quarks, as well as calculations using Wilson sea quarks and
Ginsparg-Wilson valence quarks.Comment: 19 pages, 0 figures, RevTeX
Chiral Dynamics of Low-Energy Kaon-Baryon Interactions with Explicit Resonance
The processes involving low energy and interactions (where
or ) are studied in the framework of heavy baryon chiral
perturbation theory with the (1405) resonance appearing as an
independent field.
The leading and next-to-leading terms in the chiral expansion are taken into
account. We show that an approach which explicitly includes the (1405)
resonance as an elementary quantum field gives reasonable descriptions of both
the threshold branching ratios and the energy dependence of total cross
sections.Comment: 16 pages, 6 figure
On neutral pion electroproduction off deuterium
Threshold neutral pion electroproduction on the deuteron is studied in the
framework of baryon chiral perturbation theory at next-to-leading order in the
chiral expansion. To this order in small momenta, the amplitude is finite and a
sum of two- and three-body interactions with no undetermined parameters. We
calculate the S-wave multipoles for threshold production and the deuteron
S-wave cross section as a function of the photon virtuality. We also discuss
the sensitivity to the elementary neutron amplitudes.Comment: 6 pp, revtex, 3 figs, corrected version, to appear in Phys. Rev.
Neutrino-Deuteron Scattering in Effective Field Theory at Next-to-Next-to Leading Order
We study the four channels associated with neutrino-deuteron breakup
reactions at next-to-next to leading order in effective field theory. We find
that the total cross-section is indeed converging for neutrino energies up to
20 MeV, and thus our calculations can provide constraints on theoretical
uncertainties for the Sudbury Neutrino Observatory. We stress the importance of
a direct experimental measurement to high precision in at least one channel, in
order to fix an axial two-body counterterm.Comment: 32 pages, 14 figures (eps
Two Nucleons on a Lattice
The two-nucleon sector is near an infrared fixed point of QCD and as a result
the S-wave scattering lengths are unnaturally large compared to the effective
ranges and shape parameters. It is usually assumed that a lattice QCD
simulation of the two-nucleon sector will require a lattice that is much larger
than the scattering lengths in order to extract quantitative information. In
this paper we point out that this does not have to be the case: lattice QCD
simulations on much smaller lattices will produce rigorous results for nuclear
physics.Comment: 13 pages, 6 figure
Saxion Emission from SN1987A
We study the possibility of emission of the saxion, a superpartner of the
axion, from SN1987A. The fact that the observed neutrino pulse from SN1987A is
in excellent agreement with the current theory of supernovae places a strong
bound on the energy loss into any non-standard model channel, therefore
enabling bounds to be placed on the decay constant, f_a, of a light saxion. The
low-energy coupling of the saxion, which couples at high energies to the QCD
gauge field strength, is expected to be enhanced from QCD scaling, making it
interesting to investigate if the saxion could place stronger bounds on f_a
than the axion itself. Moreover, since the properties of the saxion are
determined by f_a, a constraint on this parameter can be translated into a
constraint on the supersymmetry breaking scale. We find that the bound on f_a
from saxion emission is comparable with the one derived from axion emission due
to a cancellation of leading-order terms in the soft-radiation expansion.Comment: 18 pages, 2 figures; minor changes, typos corrected, version to
appear in JHE
- …