8 research outputs found
Influence of caries detection dye on bond strength of sound and carious affected dentin: An in-vitro study
OBJECTIVES: The objective of this study was to evaluate the influence of caries detection dye on the in-vitro tensile bond strength of adhesive materials to sound and carious affected dentin. MATERIALS AND METHODS: Forty healthy and carious human molars were ground to expose superficial sound dentin and carious affected dentin. Caries Detector dye was applied to sound and carious affected dentin and rinsed. Subsequently the dentin was etched with 37% phosphoric acid and rinsed leaving a moist dentin surface. The adhesive (Single bond) was applied in single layers and light cured. A posterior composite (Filtek Z 250) were used to prepare the bond strength specimens with a 3 mm in diameter bonding area. Control and experimental groups were made with and without application of dye respectively. Each group includes both sound and carious affected dentin. After 24 hour immersion in distilled water, tensile bond strength (MPa) was measured using an Instron testing machine. RESULTS: Analysis of variance (ANOVA) was used to evaluate the data. The tensile bond strength were significantly less in experimental subgroup than control subgroups. CONCLUSION: The tensile bond strengths were higher in sound and carious affected dentin without application of caries detection dyes
Management of pulpal floor perforation and grade II Furcation involvement using mineral trioxide aggregate and platelet rich fibrin: A clinical report
To report the management of an iatrogenic perforation of pulpal floor in the furcation of mandibular first molar, using Mineral Trioxide Aggregate (MTA) and platelet rich fibrin (PRF). Unpredictable endodontic root/pulp chamber floor perforations resulting in unacceptable high rate of clinical failure has now been a lesser threat with the advent of new technologies and biocompatible materials that utilize the applications of basic research along with tissue engineering concept in clinical practice. Present case report illustrates the use of MTA and platelet rich fibrin (PRF) for the repair of the perforation defect and regeneration of the lost periodontium in furcation area. Although, histologic events and reaction of MTA with PRF is not studied so far, however, the autologous and biocompatible nature of the components used for present treatment modalities seems to be beneficial for the long term clinical results obtained in our case
Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview
The purpose of this review is to gain an overview of the applications of the dental pulp stem cells (DPSCs) in the treatment of various medical diseases. Stem cells have the capacity to differentiate and regenerate into various tissues. DPSCs are the adult stem cells that reside in the cell rich zone of the dental pulp. These are the multipotent cells that can be explained by their embryonic origin from the neural crest. Owing to this multipotency, these DPSCs can be used in both dental and medical applications. A review of literature has been performed using electronic and hand-searching methods for the medical applications of DPSCs. On the basis of the available information, DPSCs appear to be a promising alternative for the regeneration of tissues and treatment of various diseases, although, long-term clinical trials and studies are needed to confirm their efficacy