129 research outputs found

    The effect of proprioceptive knee bracing on knee stability during three different sport related movement tasks in healthy subjects and the implications to the management of Anterior Cruciate Ligament (ACL) injuries

    Get PDF
    Abstract Introduction: Proprioceptive knee braces have been shown to improve knee mechanics, however much of the work to date has focused on tasks such as slow step down tasks rather than more dynamic sporting tasks. Objective: This study aimed to explore if such improvements in stability may be seen during faster sports specific tasks as well as slower tasks. Method: Twelve subjects performed a slow step down, single leg drop jump and pivot turn jump with and without a silicone web brace. 3D kinematics of the knee were collected using a ten camera Qualisys motion analysis system. Reflective markers were placed on the foot, shank, thigh and pelvis using the Calibrated Anatomical Systems Technique. A two way ANOVA with repeated measures was performed with post-hoc pairwise comparison to explore the differences between the two conditions and three tasks. Results: Significant differences were seen in the knee joint angles and angular velocities in the sagittal, coronal and transverse planes between the tasks. The brace showed a reduction in knee valgum and internal rotation across all tasks, with the most notable effect during the single leg drop jump and pivot turn jump. The transverse plane also showed a significant reduction in the external rotation knee angular velocity when wearing the brace. Discussion: The brace influenced the knee joint kinematics in coronal and transverse planes which confirms that such braces can have a significant effect on knee control during dynamic tasks. Further studies are required exploring the efficacy of proprioceptive braces in athletic patient cohort. Acknowledgements This study is partly founded by Erasmus+ program who have sponsored two masters students. The braces were supplied by DJO Global, Inc. The suppliers played no role in the design, execution, analysis and interpretation of the data or writing of this study

    Damages of the tibial post in constrained total knee prostheses in the early postoperative course – a scanning electron microscopic study of polyethylene inlays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigation of the risk of fracture of the polyethylene (PE) inlay in constrained total knee prostheses.</p> <p>Methods</p> <p>Three unused and seven polyethylene inlays that had been implanted in a patient's knee for an average of 25.4 months (min 1.1 months, max 50.2 months) were investigated using scanning electron microscopy (SEM). All inlays were of the same type and size (Genesis II constrained, Smith & Nephew). The PE surface at the transition from the plateau to the post was analyzed.</p> <p>Results</p> <p>The unused inlays had fissure-free surfaces. All inlays that had been implanted in a patient's knee already had distinct fissures at the front and backside of the post.</p> <p>Conclusion</p> <p>The fissures of the transition from the plateau to the post indicated a loading-induced irreversible mechanical deformation and possibly cause the fracture of the inlay.</p

    Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation

    Get PDF
    Objectives: Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back - a combination of movements which equates to tibial internal/femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements in situ/in vivo. Methods: The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m2 (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities. Results: During maximally flexed kneeling and lunging activities, the mean tibial internal rotation was 8° (standard deviation (SD) 6). At a mean 112° flexion (SD 16) during lunging, the medial and lateral condyles were a mean of 2 mm (SD 3) and 8 mm (SD 4) posterior to a transverse line passing through the centre of the medial tibial concavity. With a mean flexion of 117° (SD 14) during kneeling, the medial and lateral condyles were a mean of 1 mm (SD 4) anterior and 6 mm (SD 4) posterior to the same line. During dynamic stair and pivoting activities, there was a mean anteroposterior translation of 0 mm to 2 mm of the medial femoral condyle. Backward lateral condylar translation occurred and was linearly related to tibial rotation. Conclusion: The GMK Sphere TKA in our study group shows movements similar in pattern, although reduced in magnitude, to those in recent reports relating to normal knees during several activities. Specifically, little or no translation of the medial femoral condyle was observed during flexion, but there was posterior roll-back of the lateral femoral condyle, equating to tibiofemoral rotation. We conclude that the GMK Sphere is anteroposteriorly stable medially and permits rotation about the medial compartment

    Clinical and Non-Clinical Aspects of Distal Radioulnar Joint Instability

    Get PDF
    Untreated distal radioulnar joint (DRUJ) injuries can give rise to long lasting complaints. Although common, diagnosis and treatment of DRUJ injuries remains a challenge. The articulating anatomy of the distal radius and ulna, among others, enables an extensive range of forearm pronosupination movements. Stabilization of this joint is provided by both intrinsic and extrinsic stabilizers and the joint capsule. These structures transmit the load and prevent the DRUJ from luxation during movement. Several clinical tests have been suggested to determine static or dynamic DRUJ stability, but their predictive value is unclear. Radiologic evaluation of DRUJ instability begins with conventional radiographs in anterioposterior and true lateral view. If not conclusive, CT-scan seems to be the best additional modality to evaluate the osseous structures. MRI has proven to be more sensitive and specific for TFCC tears, potentially causing DRUJ instability. DRUJ instability may remain asymptomatic. Symptomatic DRUJ injuries treatment can be conservative or operative. Operative treatment should consist of restoration of osseous and ligamenteous anatomy. If not successful, salvage procedures can be performed to regain stability

    Fisiolog\ueda Articular. Miembro Superior

    No full text
    • 

    corecore