13 research outputs found

    Targeted expression of stepfunction opsins in transgenic rats for optogenetic studies

    Get PDF
    Abstract Rats are excellent animal models for experimental neuroscience. However, the application of optogenetics in rats has been hindered because of the limited number of established transgenic rat strains. To accomplish cell-type specific targeting of an optimized optogenetic molecular tool, we generated ROSA26/CAG-floxed STOP-ChRFR(C167A)-Venus BAC rats that conditionally express the step-function mutant channelrhodopsin ChRFR(C167A) under the control of extrinsic Cre recombinase. In primary cultured cortical neurons derived from this reporter rat, only Cre-positive cells expressing ChRFR(C167A) became bi-stable, that is, their excitability was enhanced by blue light and returned to the baseline by yellow~red light. In bigenic pups carrying the Phox2B-Cre driver, ChRFR(C167A) was specifically expressed in the rostral parafacial respiratory group (pFRG) in the medulla, where endogenous Phox2b immunoreactivity was detected. These neurons were sensitive to blue light with an increase in the firing frequency. Thus, this transgenic rat actuator/reporter system should facilitate optogenetic studies involving the effective in vivo manipulation of the activities of specific cell fractions using light of minimal intensity

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage

    No full text
    The brain demands high-energy supply and obstruction of blood flow causes rapid deterioration of the healthiness of brain cells. Two major events occur upon ischemia: acidosis and liberation of excess glutamate, which leads to excitotoxicity. However, cellular source of glutamate and its release mechanism upon ischemia remained unknown. Here we show a causal relationship between glial acidosis and neuronal excitotoxicity. As the major cation that flows through channelrhodopsin-2 (ChR2) is proton, this could be regarded as an optogenetic tool for instant intracellular acidification. Optical activation of ChR2 expressed in glial cells led to glial acidification and to release of glutamate. On the other hand, glial alkalization via optogenetic activation of a proton pump, archaerhodopsin (ArchT), led to cessation of glutamate release and to the relief of ischemic brain damage in vivo. Our results suggest that controlling glial pH may be an effective therapeutic strategy for intervention of ischemic brain damage

    JCOG0911 INTEGRA study: a randomized screening phase II trial of interferonβ plus temozolomide in comparison with temozolomide alone for newly diagnosed glioblastoma

    Get PDF
    Purpose: This study explored the superiority of temozolomide (TMZ) + interferonβ (IFNβ) to standard TMZ as treatment for newly diagnosed glioblastoma (GBM) via randomized phase II screening design.Experimental design: Eligibility criteria included histologically proven GBM, with 50% of the tumor located in supratentorial areas, without involvement of the optic, olfactory nerves, and pituitary gland and without multiple lesions and dissemination. Patients in the TMZ + radiotherapy (RT) arm received RT (2.0 Gy/fr/day, 30 fr) with TMZ (75 mg/m², daily) followed by TMZ maintenance (100–200 mg/m²/day, days 1–5, every 4 weeks) for 2 years. Patients in the TMZ + IFNβ + RT arm intravenously received IFNβ (3 MU/body, alternative days during RT and day 1, every 4 weeks during maintenance period) and TMZ + RT. The primary endpoint was overall survival (OS). The planned sample size was 120 (one-sided alpha 0.2; power 0.8).Results: Between Apr 2010 and Jan 2012, 122 patients were randomized. The median OS with TMZ + RT and TMZ + IFNβ + RT was 20.3 and 24.0 months (HR 1.00, 95% CI 0.65–1.55; one-sided log rank P = 0.51). The median progression-free survival times were 10.1 and 8.5 months (HR 1.25, 95% CI 0.85–1.84). The incidence of neutropenia with the TMZ + RT and the TMZ + IFNβ + RT (grade 3–4, CTCAE version 3.0) was 12.7 versus 20.7% during concomitant period and was 3.6 versus 9.3% during maintenance period. The incidence of lymphopenia was 54.0 versus 63.8% and 34.5 versus 41.9%.Conclusions: TMZ + IFNβ + RT is not considered as a candidate for the following phase III trial, and TMZ + RT remained to be a most promising treatment. This trial was registered with the UMIN Clinical Trials Registry: UMIN000003466
    corecore