220 research outputs found

    Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans

    Get PDF
    While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response, less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C. elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s). Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This modulation of secretion likely represents an additional level of control over DAF-28/insulin function

    Streptococcus intermedius causing infective endocarditis and abscesses: a report of three cases and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus intermedius </it>is a member of the Streptococcus anginosus group. Clinical disease with <it>S. intermedius </it>is characterized by abscess formation and rarely endocarditis. Identification of <it>Streptococcus intermedius </it>is difficult, leading to the development of molecular methods to more accurately identify and characterize this organism.</p> <p>Case presentation</p> <p>Over a period of 6 months we encountered three cases of invasive <it>Streptococcus intermedius </it>infection presenting as hepatic abscesses, brain abscess, and endocarditis. We confirmed our microbiologic diagnosis through 16S sequencing and found a common virulence gene in each case.</p> <p>Conclusion</p> <p>Our report illustrates three different clinical manifestations due to <it>Streptococcus intermedius </it>infection that can be encountered in healthy individuals in a community hospital setting. To our knowledge, this is the first case of <it>Streptococcus intermedius </it>endocarditis confirmed by 16S sequencing analysis. The use of molecular methods may allow a better understanding of the epidemiology and pathogenesis of this organism.</p

    Maternal Wnt/β-Catenin Signaling Coactivates Transcription through NF-κB Binding Sites during Xenopus Axis Formation

    Get PDF
    Maternal Wnt/β-Catenin signaling establishes a program of dorsal-specific gene expression required for axial patterning in Xenopus. We previously reported that a subset of dorsally expressed genes depends not only on Wnt/β-Catenin stimulation, but also on a MyD88-dependent Toll-like receptor/IL1-receptor (TLR/IL1-R) signaling pathway. Here we show that these two signal transduction cascades converge in the nucleus to coactivate gene transcription in blastulae through a direct interaction between β-Catenin and NF-κB proteins. A transdominant inhibitor of NF-κB, ΔNIκBα, phenocopies loss of MyD88 protein function, implicating Rel/NF-κB proteins as selective activators of dorsal-specific gene expression. Sensitive axis formation assays in the embryo demonstrate that dorsalization by Wnt/β-Catenin requires NF-κB protein activity, and vice versa. Xenopus nodal-related 3 (Xnr3) is one of the genes with dual β-Catenin/NF-κB input, and a proximal NF-κB consensus site contributes to the regional activity of its promoter. We demonstrate in vitro binding of Xenopus β-Catenin to several XRel proteins. This interaction is observed in vivo upon Wnt-stimulation. Finally, we show that a synthetic luciferase reporter gene responds to both endogenous and exogenous β-Catenin levels in an NF-κB motif dependent manner. These results suggest that β-Catenin acts as a transcriptional co-activator of NF-κB-dependent transcription in frog primary embryonic cells

    Anapole nanolasers for mode-locking and ultrafast pulse generation

    Get PDF
    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry

    Pudendal nerve decompression in perineology : a case series

    Get PDF
    BACKGROUND: Perineodynia (vulvodynia, perineal pain, proctalgia), anal and urinary incontinence are the main symptoms of the pudendal canal syndrome (PCS) or entrapment of the pudendal nerve. The first aim of this study was to evaluate the effect of bilateral pudendal nerve decompression (PND) on the symptoms of the PCS, on three clinical signs (abnormal sensibility, painful Alcock's canal, painful "skin rolling test") and on two neurophysiological tests: electromyography (EMG) and pudendal nerve terminal motor latencies (PNTML). The second aim was to study the clinical value of the aforementioned clinical signs in the diagnosis of PCS. METHODS: In this retrospective analysis, the studied sample comprised 74 female patients who underwent a bilateral PND between 1995 and 2002. To accomplish the first aim, the patients sample was compared before and at least one year after surgery by means of descriptive statistics and hypothesis testing. The second aim was achieved by means of a statistical comparison between the patient's group before the operation and a control group of 82 women without any of the following signs: prolapse, anal incontinence, perineodynia, dyschesia and history of pelvi-perineal surgery. RESULTS: When bilateral PND was the only procedure done to treat the symptoms, the cure rates of perineodynia, anal incontinence and urinary incontinence were 8/14, 4/5 and 3/5, respectively. The frequency of the three clinical signs was significantly reduced. There was a significant reduction of anal and perineal PNTML and a significant increase of anal richness on EMG. The Odd Ratio of the three clinical signs in the diagnosis of PCS was 16,97 (95% CI = 4,68 – 61,51). CONCLUSION: This study suggests that bilateral PND can treat perineodynia, anal and urinary incontinence. The three clinical signs of PCS seem to be efficient to suspect this diagnosis. There is a need for further studies to confirm these preliminary results

    Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels

    Get PDF
    Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using ∼2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p<5×10−8) or suggestive associations (p<4×10−7) were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding p<4×10−7. Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels

    Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat

    Get PDF
    A high-resolution chromosome arm-specific mapping population was used in an attempt to locate/detect gene(s)/QTL for different root traits on the short arm of rye chromosome 1 (1RS) in bread wheat. This population consisted of induced homoeologous recombinants of 1RS with 1BS, each originating from a different crossover event and distinct from all other recombinants in the proportions of rye and wheat chromatin present. It provides a simple and powerful approach to detect even small QTL effects using fewer progeny. A promising empirical Bayes method was applied to estimate additive and epistatic effects for all possible marker pairs simultaneously in a single model. This method has an advantage for QTL analysis in minimizing the error variance and detecting interaction effects between loci with no main effect. A total of 15 QTL effects, 6 additive and 9 epistatic, were detected for different traits of root length and root weight in 1RS wheat. Epistatic interactions were further partitioned into inter-genomic (wheat and rye alleles) and intra-genomic (rye–rye or wheat–wheat alleles) interactions affecting various root traits. Four common regions were identified involving all the QTL for root traits. Two regions carried QTL for almost all the root traits and were responsible for all the epistatic interactions. Evidence for inter-genomic interactions is provided. Comparison of mean values supported the QTL detection
    corecore