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Abstract Breeding trials typically consist of pheno-

typic observations for various traits evaluated in

multiple environments. For sugarcane in particular,

repeated measures are obtained for plant crop and one

or more ratoons, such that joint analysis throughmixed

models for modeling heterogeneous genetic (co)vari-

ances between traits, locations and harvests is appro-

priate. This modeling approach also enables us to

include molecular marker information, aiding in

understanding the genetic architecture of quantitative

traits. Our work aims at detecting QTL and QTL by

environment interactions by fitting mixed models with

multiple QTLs, with appropriate modeling of multi-

trait multi-environment data for outcrossing species.

We evaluated 100 individuals from a biparental cross

at two locations and three years for fiber content,

sugar content (POL) and tonnes of cane per hectare

(TCH). We detected 13 QTLs exhibiting QTL by

location, QTL by harvest or the three-way interaction.

Overall, 11 of the 13 effects presented some degree of

pleiotropy, affecting at least two traits. Furthermore,

these QTLs always affected fiber and TCH in the same

direction, whereas POL was affected in the opposite

way. There was no evidence in favor of the linked

QTL over the pleiotropic QTL hypothesis for any

detected genome position. These results provide

valuable insights into the genetic basis of quantitative

variation in sugarcane and the genetic relation

between traits.

Keywords Multiple interval mapping � Full-sib
family � Genetic architecture � Model selection �
Polyploid

Introduction

Plant breeding is an essential activity to agriculture,

affording short-term new elite cultivars and long-term

potential for increased yields and response to adver-

sities (Moose and Mumm 2008). To select both

broadly stable genotypes and those adapted to specific

environmental conditions, it is paramount to have
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information about genotype by environment interac-

tion (G 9 E) and, particularly for marker-assisted

selection (MAS), QTL 9 E interaction (Eeuwijk et al.

2001; Smith et al. 2001; Verbyla et al. 2003; Boer

et al. 2007). Likewise, knowledge of the genetic

correlations between traits can provide clues as to the

possibility of breaking undesirable correlations

between agronomically important traits, therefore

playing an important role when designing breeding

strategies (Jiang and Zeng 1995; Welham et al. 2010).

To achieve such goals, evaluation trials are gener-

ally conducted in several locations, ideally with

contrasting environmental features, and throughout

many (consecutive) years. For species that can be

vegetatively propagated, such as sugarcane, repeated

measures can be obtained for clones kept in the field,

for both plant crop and ratoons (Smith et al. 2007).

The ability to evaluate the same genotypes in multiple

sites and years makes such data naturally suited for

joint analysis. In particular, appropriate modeling of

genetic and residual (co)variance matrices alleviates

the need to make unrealistic assumptions about the

distribution of errors and affords unbiased estimates of

model effects, such as QTL effects (Balzarini 2001).

In this context of modeling G 9 E interaction and

correlation between traits, mixed models are a natural

statistical approach to use (Smith et al. 2005).

It can be observed from the breeding field trial

evaluation literature that few studies jointly analyze

multi-trait multi-environment (MTME) data (Malos-

etti et al. 2008). The most likely reason for this is the

difficulty in analyzing the data, particularly in inter-

preting the results, as well as the lack of adequate and

easily accessible statistical methodology and software

for such goals. Traditionally, data of this type have

been analyzed by fitting separate ordinary or somehow

naı̈ve models for each trait and environment combi-

nation, multi-environment models for each trait or

multi-trait models individually for each environment

(Sun et al. 2012; Bonneau et al. 2013; Freeman et al.

2013; Lopes et al. 2013; Liu et al. 2014), followed by

informal comparisons, generally graphical, or ad hoc

meta-analysis to derive conclusions about G 9 E and/

or correlation between traits (Piepho 2000). The

situation is particularly evident for QTL studies: only

a handful of examples utilize MTME modeling for

QTLmapping, even for well-studied species for which

inbred-derived populations are available (Malosetti

et al. 2006, 2008; Singh et al. 2012; Alimi et al. 2013).

Furthermore, another important aspect is that most

QTL mapping studies disregard the occurrence of

epistasis. This phenomenon has occasionally been

overlooked, considered rare and less important than

other genetic effects, but collective evidence attests its

prevalence and importance (Garcia et al. 2008;

Phillips 2008; Manolio et al. 2009; Eichler et al.

2010). QTL mapping can benefit from the inclusion of

epistatic interactions directly in the search process,

such as that by the multiple interval mapping (MIM)

model (Kao and Zeng 1997; Kao et al. 1999). This

practice increases statistical power for QTL detection,

removes biases from QTL effect and position esti-

mates and yields breeding values that can be directly

leveraged by breeding programs through MAS (Zeng

et al. 1999; Collard and Mackill 2008). The MIM

method can be interpreted as a model (variable)

selection procedure and, as such, can be readily

incorporated into the mixed model context through a

least-squares approximation (Haley and Knott 1992;

Broman and Sen 2009).

The situation for sugarcane is not unlike that

encountered for most diploid species, albeit with a few

extra obstacles. Most studies make use of two linkage

maps, one for each parent, constructed based on

markers segregating on a 1:1 fashion. QTL mapping

has been conducted through single-marker, Interval

Mapping (IM) (Lander and Botstein 1989) or Com-

posite Interval Mapping (CIM) analyses (Zeng 1993,

1994), with methodologies devised for backcross

progenies, and only for single trait–environment

combinations (Jordan et al. 2004; Wei et al. 2006;

Raboin et al. 2008; Pinto et al. 2010; Costet et al.

2012; Nibouche et al. 2012; Singh et al. 2013). A few

exceptions exist, with some studies making use of

markers with a 3:1 segregation pattern or higher

dosages (Aitken et al. 2008; Piperidis et al. 2008). To

our knowledge, Pastina et al. (2012) described the

most realistic model for QTL mapping in sugarcane to

date, based on mixed models for multi-environment

data. However, these authors did not include multitrait

data.

In this paper, we present a QTLmapping analysis of

a sugarcane segregating progeny, evaluated over

multiple locations and years. Our goals were to

appropriately model the MTME structure of the

observations, to extend the multi-trait MIM model,

in a mixed model context, to outcrossing species, i.e.,

progenies derived from non-inbred heterozygous
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parents, and to study the genetic architecture of

important agricultural traits related to bioethanol and

sucrose production.

Materials and methods

Plant material and genetic linkage map

The genetic markers utilized in this work have been

previously described by Garcia et al. (2006) and

Oliveira et al. (2007), and the field trial data analyzed

herein have been previously addressed by Pastina

et al. (2012). Briefly, we evaluated a progeny of 100

individuals obtained by a cross between Brazilian pre-

commercial cultivars SP80-180 and SP80-4966 in

field trials conducted in two locations (Piracicaba and

Jaú, State of São Paulo, Brazil), for three consecutive

harvest years (2003 through 2005). Measured traits

included cane yield in Mg ha�1 (tonnes of cane per

hectare, or TCH), sugar yield in Mg ha�1 (tonnes of

sugar per hectare, or TSH), percent sucrose content

(POL) and percent fiber content. We removed trait

TSH from the analysis because of its extremely high

correlation with TCH, which caused numerical prob-

lems during model fitting (data not shown). The

experimental design consisted of an augmented ran-

domized complete block design with two replicates.

We separated genotypes into three groups and

included four commercial checks in each of them.

These data naturally lend themselves to an MTME-

based analysis because we evaluated multiple traits in

multiple environments (site 9 harvest combinations),

thus resulting in genetic and environmental correla-

tions between traits and between environments. To

have models based on more realistic assumptions, all

these correlations need to be considered.

Genotypic data were available and consisted of

restriction fragment length polymorphism and simple

sequence repeat single-dose markers (SDMs, i.e.,

markers present in at most one copy) coded as

dominant markers, such that only markers with 1:1

and 3:1 segregation patterns were present (Wu et al.

1992). The first situation arises when the SDM is

present in a single parent, and the latter exists when the

marker band is present in both parents. We applied a

Chi-square test to each marker to test for segregation

distortion and discarded strongly deviating markers

after Bonferroni correction at a genomewise error rate

of 0.05. A multipoint linkage map had previously been

obtained for this population through OneMap (Wu

et al. 2002; Margarido et al. 2007), with a total of 317

markers distributed over 96 linkage groups (LGs),

jointly covering 2468.14 centiMorgans (cM) with the

Kosambi mapping function (Kosambi 1944). This

map is presented as supplementary material in Pastina

et al. (2012). The number of markers per LG varied

between 2 and 14. Based on shared loci, 91 out of the

96 LGs had been assembled into 11 putative homology

groups (HGs), each containing from 2 to 23 LGs

(Pastina et al. 2012). The other 424 markers did not

map to any linkage group, and we included them in the

analysis as single markers.

For notation purposes, following the convention

from Wu et al. (2002), we denoted SDM loci segre-

gating exclusively for parent SP80-180 (SP80-4966)

by type D1ðD2Þ and markers informative for both

parents by type C. Note that some LGs had a mixture

of all marker types, whereas others were composed

solely of D1 (or D2) markers.

QTL model for noninbred populations

In a similar manner to Pastina et al. (2012) and Gazaffi

et al. (2014), we consider two diploid non-inbred

individuals, denoted as P and Q. For a genetic marker

m, the two alleles of individual P can be denoted as P1
m

and P2
m, with a similar definition for both alleles of

individual Q. Figure 1 shows a cross between two

such individuals, for two adjacent markers m and

mþ 1, and an intervening QTL with alleles P1 & P2

and Q1 & Q2 (Lin et al. 2003). Despite sugarcane

being a polyploid species, in practice, we only

consider two alleles because the molecular markers

we used are all presence/absence dominant markers.

Fig. 1 Biparental cross between non-inbred individuals P and

Q. Pf1;2g
m ; Qf1;2g

m ; P
f1;2g
mþ1 and Q

f1;2g
mþ1 are marker alleles for loci

m and mþ 1; P1;P2;Q1 and Q2 are QTL alleles
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At any given marker or QTL locus, a diploid

organism can hold up to four different alleles, which

allows for a maximum of three orthogonal contrasts to

be defined. For QTL alleles P1 & P2 and Q1 & Q2, the

following three orthogonal contrasts have a clear

genetic interpretation:

cP ¼ þP1Q1 þ P1Q2 � P2Q1 � P2Q2

cQ ¼ þP1Q1 � P1Q2 þ P2Q1 � P2Q2

cPQ ¼ þP1Q1 � P1Q2 � P2Q1 þ P2Q2

The first contrast compares P1 and P2, i.e., it

corresponds to the additive effect between both alleles

from individual P. Similarly, the second contrast

refers to the additive effect between alleles from

individual Q. Finally, the third contrast tests devia-

tions from additivity, or dominance.

Given a linkage map and a segregating progeny,

conditional QTL genotype probabilities can be esti-

mated and amixture model devised to fit these contrasts

to phenotypic data, allowing the estimation and testing

of additive and dominant effects (Lander and Botstein

1989; Zeng et al. 1999). This method, however, is

computationally expensive and can make generaliza-

tions to multiple QTLs and MTME data impracticable.

A commonly used approximation, initially pro-

posed by Haley and Knott (1992), defines a linear

regression model with the mathematical expectations

of the effects as covariates, which makes model fitting

possible via the usual least-squares estimator, avail-

able as part of many statistical packages. Both

theoretical and empirical works show that such

approximation generally performs almost as well as

the exact model (Broman 2001). In the mixed model

context, these mathematical expectations are named

genetic predictors.

In the eventual scenario where a linkage group does

not contain sufficient marker information for the four

QTL genotypes to be identifiable (e.g., having only

D1-type markers), collinearity issues arise between the

three contrasts such that only one or two of them can

be fitted, depending on the situation (Belsley et al.

1980). As an example, consider the case where a

linkage group presents markers exclusively of type

D1: This prevents recombination on individualQ to be

identified, so only the additive effect between P1 and

P2 can be estimated. Our model took these into

consideration by only fitting effects without

collinearity.

Phenotypic model fitting

According to the experimental design implemented in

the field, we fitted the following model to the

phenotypic data:

y
istjkr

¼ lstjkr þ Gistjk þ eistjkr

where y
istjkr

is the phenotype of the rth replicate

(block) of ith genotype in group s, for trait t in site j and

harvest k; lstjkr is the mean of block r within group s,

for trait t in site j and harvest k; Gistjk is the genetic

effect of genotype i of group s, for trait t in site j and

harvest k; and eistjkr is the non-genetic effect. Under-

lined terms represent random effects. This model will

henceforth be called ‘‘genetic effects model’’.

According to their origin, we separated genotypes into

two groups, n ¼ ng þ nc, where ng is the number of

genotypes in the progeny (clones) (i ¼ 1; . . .; ng) and

nc is the number of checks (i ¼ ng þ 1; . . .; ng þ nc).

The model for Gistjk is given by:

Gistjk ¼
g
ite

i ¼ 1; . . .; ng
cistjk i ¼ ng þ 1; . . .; ng þ nc

�

where g
ite
is a random variable for the genetic effect of

genotype i for trait t in environment e and cistjk
represents a fixed effect for check i in group s for trait t

in site j and harvest k. Note that, for the random effect

g
ite
, we combined site and harvest into an environment

variable due to software limitations.

Main fixed effects of blocks, groups, traits, sites and

harvests, as well as their possible interactions, were

not of direct interest; thus, they were all included in the

term lstjkr rather being modeled individually, simply

to control for their presence. Consequently, we could

obtain unbiased estimates for the effects of interest,

particularly Gistjk (Verbyla et al. 2003; Boer et al.

2007).

The vector of genetic effects g ¼ ðg1111; . . .; gITJKÞ
follows a multivariate normal distribution,

g�Nð0;G� IngÞ, where � represents the Kronecker

(direct) product between two matrices and Ing is an

identity matrix of size ng. Note that the effect of group

s is not included in this random variable. As a first step

in the model fitting process, we examined several

different structures for matrix G (Table 1). Two main

classes of models can be distinguished: models 1

through 4 combine traits and environments factorially
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into different ‘‘traits’’, in a broader sense of the term,

and fit a single matrix G to these new ‘‘traits’’. Models

5 through 10, on the other hand, fit two individual

component matrices, denoted Gtrait and Genv, respec-

tively, for traits and environments. For the latter

models, it follows that G ¼ Gtrait � Genv (Smith et al.

2007). Due to software limitations, we could decom-

pose the (co)variance matrix into only two component

matrices, which required the combination of sites and

harvests into environments and forcefully prevented a

more refined model to be fitted. This and all subse-

quent steps were performed in Genstat version 16

(VSN International 2013).

In Table 1, model 1 corresponds to a diagonal

matrix, i.e., a model in which a different genetic

variance is assigned to each ‘‘trait’’, with all correla-

tions being equal to zero. Model 2 also fits a different

variance for each class, but includes a uniform genetic

correlation. The first-order factor analytic model 3 is a

multiplicative model that allows heterogeneity in both

variances and covariances, i.e., approximates a fully

unstructured model, while using a smaller number of

parameters (Piepho 2000; Eeuwijk et al. 2001).

Finally, the unstructured model 4 fits an individual

(co)variance term for each trait–environment

combination. Models 5 through 10 use these same

structures, separately for each component matrix, in

several distinct combinations. Note that all these

models allow heterogeneous variances for the various

traits. Additionally, the genetic effects model includes

a different mean for each trait. This modeling strategy

takes into account the fact that phenotypic traits are

measured in different scales (i.e., data do not need to

be standardized). We compared all models based on

their AIC (Akaike Information Criterion) and BIC

(Bayesian Information Criterion) values, where a

smaller value corresponds to a better model (Burnham

and Anderson 2004). Notably, we also evaluated other

component matrix combinations (such as a

DIAG� DIAG, for example), but these resulted in

poor fits to the data and are thus not shown.

Taking into consideration the fact that the three

studied variables are measured in different scales and

hence have different orders of magnitude for their

corresponding (co)variances, we also examined ade-

quate models for the non-genetic residual error term

eistjkr . We accomplished this by testing several (co)-

variance structures for its associated matrix R, in a

manner similar to that described for G. In particular,

we evaluated models with a single matrix for factorial

Table 1 Genetic (co)variance matrix (G): evaluated models

G matrix Model type # PARa Description

G ¼ Gtrait�env
M�M

1) DIAG M Heterogeneous genetic variances

2) CSHet M þ 1 Compound symmetry (uniform correlation) and heterogeneous variances

3) FA1 2M First-order factor analytic

4) US MðMþ1Þ
2

Unstructured

G ¼ Gtrait
T�T � Genv

E�E
5) DIAG �
FA1

T þ 2Eð Þ � 1 Heterogeneous variation for traits and first-order factor analytic model

for environments

6) CSHet �
FA1

T þ 1þ 2Eð Þ � 1 Heterogeneous compound symmetry for traits and first-order factor

analytic model for environments

7) US �
FA1

T Tþ1ð Þ
2

þ 2E
h i

� 1 Unstructured model for traits and first-order factor analytic for

environments

8) DIAG �
US

T þ E Eþ1ð Þ
2

h i
� 1 Heterogeneous variation for traits and unstructured model for

environments

9) CSHet �
US

T þ 1þ E Eþ1ð Þ
2

h i
� 1 Heterogeneous compound symmetry for traits and unstructured model

for environments

10) US �
US

T Tþ1ð ÞþE Eþ1ð Þ
2

h i
� 1 Unstructured model for both traits and environments

Models 1 through 4 use the factorial combination of traits and environments as different ‘‘traits’’. Models 5 through 10 use the direct

product between two component (co)variance matrices for traits and environments. a Number of parameters for models 5 through 10

corresponds to the sum of parameters for each matrix, minus one necessary constraint to ensure identifiability. M = T 9 E, where

T is the number of traits and E is the number of environments; E = J 9 K, where J is the number of sites and K the number of

harvests. Adapted from Pastina et al. (2012) to include multiple traits

Mol Breeding (2015) 35:175 Page 5 of 15 175
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combinations of traits, sites and harvests, as well as

models with three component matrices (trait � site �
harvest), which was in this case allowed by the

software. In the first group of models, we compared

the fit of a diagonal model with different variances,

compound symmetry with heterogeneous variances,

first-order factor analytic and the fully unstructured

model. In the latter group, we compared twenty-four

distinct combinations of appropriate component

matrices, in this case including an auto-regressive

model for harvest years. We employed the same

criteria for model comparison as for the G matrix,

namely AIC and BIC.

QTL model

After selecting the best-fit model for the experimental

design, we included genotypic information for the

QTL searching process. Adapting the multiple interval

mapping (MIM) methodology described by Kao and

Zeng (1997) and Kao et al. (1999) to a mixed model

framework, i.e., using a least-squares approximation

rather than the usual mixture model approach, the

QTL mapping model is expressed by:

y
istjkr

¼ lstjkr þ
Xm
w¼1

xpiwaptjkw þ xqiwaqtjkw þ xpqiwdpqtjkw
� �

þ G�
istjk þ eistjkr

where aptjkw ; aqtjkw and dpqtjkw are the additive genetic

predictor effects for parents P and Q and the domi-

nance genetic predictor effect, respectively, specific

for each trait 9 site 9 harvest combination, for the

QTL in genomic position w. The term G�
istjk refers to

the residual genetic variation, not explained by QTL,

thus marked with an asterisk to be differentiated from

the genetic term previously described for the genetics

effect model. The (co)variance matrix used for G�
istjk

was the one selected for the model without genotypic

data. Henceforth, we refer to the MIM strategy more

broadly as a model searching scheme.

The significance of (fixed) QTL effects was tested

through the Wald test, with the null hypothesis H0

defined by:

H0 :
ap111w ¼ ap112w ¼ . . . ¼ apTJKw ¼ 0

aq111w ¼ aq112w ¼ . . . ¼ aqTJKw ¼ 0

dpq111w ¼ dpq112w ¼ . . . ¼ dpqTJKw ¼ 0

8<
:

The above hypothesis tests for the presence of at least

one effect different from zero, i.e., if the locus at hand

affects the expression of at least one trait, in at least

one site and harvest combination.

QTL search

As originally proposed, the MIM methodology allows

for several model searching strategies (Kao and Zeng

1997; Kao et al. 1999; Zeng et al. 1999). In the present

study, we opted for sequential forward searches, with

intervening significance checks and refining steps.

In detail, starting from the genetic effects model,

we sequentially conducted one-dimensional searches

for QTL and kept positions with significant effects in

the model. During these searches, we jointly tested for

QTL and QTL 9 E interaction effects and later tested

for QTL 9 E alone (see section on ‘‘Refining steps’’).

To correct for multiple testing, we employed a p value

cutoff of 0.001. We initially conducted searches for

pseudo-markers positioned every 1 cM on all linkage

groups and subsequently for single markers. For each

genomic position, we calculated the condition indexes

of the genetic predictors matrix and removed non-

informative contrasts, i.e., contrasts for which the

condition index was greater than an empirically

chosen threshold of 3.5 (Belsley et al. 1980).

We iteratively repeated the above scheme through

searches for linkage groups and unlinked markers until

no more significant effects could be detected. Inclu-

sion of each new effect in the model explains away

part of the phenotypic variance, thus decreasing

residual variation and increasing statistical power for

detecting QTL effects (Zeng 1993, 1994).

Refining steps

Having performed the aforementioned forward

searches, we turned to some final fine-tuning steps.

The first consisted of dropping one term from the

model at a time and discarding effects with p value

[0.05. This is important because the QTL found at the

initial search rounds may no longer be significant after

the inclusion of other QTLs in the model.

Next, we tested for QTL 9 site, QTL 9 harvest

and QTL 9 site 9 harvest interactions, individually

for each QTL. We excluded non-significant interac-

tion terms from the model, provided that there were no
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significant higher-order interaction effects involving

the term at hand.

Following the MIM strategy, QTL positions were

refined by first constructing a p value profile for each

QTL, followed by choosing the most likely position,

i.e., the one resulting in the smallest p value. We

conducted this step iteratively until no further QTL

had its position altered.

It is not formally possible to test for the competing

hypotheses of pleiotropy versus linkage in the mixed

model context when QTLs are modeled as fixed

effects, for two reasons. First, because the two models

are not nested, a p value evaluation is not feasible.

Second, the AIC and BIC criteria should only be used

to compare models with different random terms or

structures, with a common fixed part, which is not the

case for the current scenario. Hence, we took an ad hoc

approach to removing any given QTL from the model

and adding an effect for each trait separately, for a

window of adjacent positions. We then compared the

profiles for each trait, checking whether peaks were

found at the same genomic position.

Finally, we used the final model to estimate QTL

effects for each trait, in each site and harvest year. We

then used the corresponding standard deviations to

test the significance of each effect. Individual effects

were deemed significant when effectj j � 2�
standard deviation, as proposed by Malosetti et al.

(2008).

Results

Genetic effects model

Comparison of the examined (co)variance structures

for matrix G made it evident that models with an

unstructured matrix for environments resulted in

better fits, in general, according to the BIC criterion

(models 8 through 10 in Table 2). The AIC selection

criterion suggested that the best model for G was the

fully unstructured model for trait–environment com-

binations (model 4), which contained a total of 171

parameters. On the other hand, BIC selected the model

combining an unstructured matrix Gtrait for traits and a

separate unstructured matrix Genv for environments

(model 10). The latter model seems to be a good

balance between parsimony and goodness of fit, as it

allows for a fairly complex (co)variance structure

without requiring a great number of parameters.

Indeed, because for this dataset BIC imposes a heavier

penalty on the number of parameters, simpler models

are expected. Given that our ultimate goal was to map

QTLs, we decided to use the model selected by BIC

because a simpler model results in smaller runtime for

fitting and is thus more amenable to QTL mapping,

which is particularly important in the MIM context.

When we tested various different (co)variance

structures for the R matrix, the best model was a

first-order factor analytic for trait–site–harvest com-

binations, according to the BIC (data not shown).

However, this model was excessively slow to fit, such

that performing several rounds of QTL searching

proved to be infeasible. Hence, for all further analyses,

we used a diagonal model, with 18 different variances

(one for each trait 9 site 9 harvest combination) and

no covariances. For comparison, we ran a few initial

QTL searches with both models and obtained vastly

similar results, showing that the simpler model did not

have a detrimental effect on QTL mapping.

QTL mapping

All detected QTLs are summarized in Fig. 2. Signif-

icant effects are displayed separately for each trait, site

and harvest, with positive effects highlighted in green,

negative effects in red and non-significant effects

represented by the symbol 0. For each trait, the

presence of two lines indicates that effects are different

for both locations, and three columns likewise indicate

different effects across harvest years. A single line

(column) represents a QTL that does not interact with

sites (harvests). Note that QTL numbering follows the

order in which they were detected throughout the

analysis, not the position along the genome as

informed by the numbering of linkage groups.

We detected a total of 13 QTLs. Out of these 13

significant positions, eight were detected on a linkage

group, while five were found on single, unmapped

markers (Online Resource 1).

Interestingly, all QTLs interacted with sites and/or

harvest years; hence, no effects were consistent across

all environmental conditions evaluated (Online

Resource 1). From the total of 13 terms, three

interacted only with sites, specifically QTL V (marker

ESTB45m6D1), XI (LG10) and XII (marker

ESTB64m3C). On the other hand, QTL IV (LG72)

exhibited only QTL 9 harvest interaction. QTL VIII
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(LG7) interacted both with sites and with harvests, but

the three-way interaction was not significant. Finally,

the remaining eight effects showed a significant three-

way interaction, i.e., displayed an oscillating effect

across site 9 harvest combinations (Online Resource

1). These results also make it apparent that very few

detected effects were expressed in a more stable

manner, as we observed many effects for only a single

site and harvest. Nonetheless, it is interesting to

observe that we did not observe any crossover

interaction, as the effects for any given trait, when

significant, were always consistently positive or

negative across sites and harvests.

It is also important to emphasize that we deter-

mined individual significances according to the

criterion effectj j � 2� standard deviation, as indi-

cated by a colored background in Fig. 2, while we

jointly tested interactions with environments through

the Wald test, by dropping the appropriate effect from

the model and checking the p value, as represented by

the presence or absence of multiple effect lines or

columns in those figures. This is the reason why Fig. 2

only displays effects for some of the traits, indicating

that effects for the other traits were not individually

significant.

Figure 2 also shows that most QTLs had pleiotropic

effects, as eleven of the 13 QTLs simultaneously

affected at least two traits. Of even more interest is the

observation that fiber and TCH were always affected

in the same direction, while sugar content was

influenced in the opposite direction. Although the

expression pattern of each QTL was dissimilar from

the others with regard to expression in various

environments, they affected the three traits in direc-

tions that agreed with phenotypic correlations, i.e., a

moderate positive correlation of 0.3907 (p\0:0001)

between TCH and fiber and almost no correlation

between sugar content and the other variables (corre-

lation of 0.0659 between POL and TCH, with

p ¼ 0:0232, and a correlation of �0:0053 between

POL and fiber, with p ¼ 0:8553).

For QTLs detected on linkage groups, profiles of

the �log10ðp�valueÞ statistic are shown in Fig. 3,

both for the joint analysis of the three traits and for

separate analysis of each individual trait. Visual

inspection of these profiles did not provide evidence

in favor of the linked QTL hypothesis over pleiotropy,

for any of the detected QTLs. For some QTLs, e.g.,

QTL XI on LG10, peaks for all traits were found to be

very close to each other. For others, such as QTL III on

LG49, a significant peak was observed exclusively for

one of the traits. Finally, as observed for QTL I on

LG92, the linkage group was too small to allow a clear

distinction of peaks.

Discussion

Breeding programs typically leverage data collected

for many traits, in multiple locations and along several

years. Consequently, genetic and residual (co)vari-

ances are expected to be different across traits and

environments, which in turn makes this type of data

particularly suited for mixed model analysis. Proper

Table 2 Models for the genetic (co)variance matrix (M = T 9 E, where T = 3 is the number of traits and E = 6 is the number of

environments) and corresponding AIC and BIC values

G matrix Model # PAR AIC BIC

G ¼ Gtrait�env
M�M

1) DIAG 18 10129.24 10223.02

2) CSHet 19 9956.91 10053.30

3) FA1 36 9158.88 9299.56

4) US 171 7867.76 8360.13

G ¼ Gtrait
T�T � Genv

E�E
5) DIAG � FA1 ð3þ 12Þ � 1 ¼ 14 8244.70 8328.06

6) CSHet � FA1 ð4þ 12Þ � 1 ¼ 15 8238.37 8324.34

7) US � FA1 ð6þ 12Þ � 1 ¼ 17 8218.84 8310.02

8) DIAG � US ð3þ 21Þ � 1 ¼ 23 8086.46 8193.27

9) CSHet � US ð4þ 21Þ � 1 ¼ 24 8082.51 8191.92

10) US � US ð6þ 21Þ � 1 ¼ 26 8064.89 8179.51

G genetic (co)variance matrix; DIAG diagonal; CSHet heterogeneous compound symmetry; FA1 first-order factor analytic; and US

unstructured. Smallest AIC and BIC values are highlighted in bold font
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modeling of such features decreases type I error

probability, increasing the reliability of results (Piepho

2005). In this work, the selected genetic effects model

explored the product of two unstructured matrices,

separately for traits and environments.

Malosetti et al. (2008), working with a maize

MTME dataset, reported that using a direct product

of component matrices resulted in a good fit to the

data, while considerably reducing the number of

parameters. On the other hand, Malosetti et al. (2006,

2008) argue that unstructured models can be prob-

lematic when the number of traits or environments

gets moderately large, due to numerical issues when

fitting the model. Notwithstanding, the number of

parameters to be estimated was relatively small for a

study of this magnitude, with three traits and six

environments, such that QTL searches were feasible

even with these more complex models. This strategy

reduced the number of parameters from 171 to 26

(Table 2), improving the fit of the genetic effects

model and facilitating subsequent steps. Eeuwijk et al.

(2001) state that unstructured models can be adequate

when there are differences in the gene pools respon-

sible for performance at each environment.

α  

α  

α  

α  

α  

α  

α  

α  

α  

α  

α  

α  

α  

α  

Fig. 2 Linkage groups with detected QTL and significant

effects according to the criterion effectj j � 2� standard

deviation. Two lines and/or three effect columns for each trait

indicate distinct effects across sites and/or harvests, respec-

tively. Significant effects are indicated by a plus or minus sign,

in case the presence of the allele increases or decreases trait

expression, respectively (Fiber fiber content in %; POL sugar

content; TCH tonnes of cane per hectare. Distances in cM using

the Kosambi mapping function)
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Deciding whether each effect in a model should be

fixed or random depends on the nature of observations,

objectives of the work and even preferences of each

researcher (Boer et al. 2007). Because the 100

genotypes herein used for QTLmapping were sampled

from a segregating progeny, we had no specific

interest in any of them, but rather in the estimation

of genetic variance as a whole. For this reason, we
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Fig. 3 Multiple interval mapping (MIM) results indicating

QTL positions (down-pointing triangles) and the

�log10ðp�valueÞ profiles along linkage groups (LG) for the

joint analysis of the three traits and for each trait individually

(Fiber percent of fiber; POL sugar content; TCH tonnes of cane

per hectare. Up-pointing triangles molecular marker positions

on linkage map. Distances in cM using the Kosambi mapping

function)
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treated genotypes as random effects. We also saw no

particular appeal in studying the average performance

of these genotypes across environments, such that we

included sites and harvests as fixed effects. Literature

on QTL mapping with mixed models shows that

different authors take QTLs as fixed or random

according to their goals (Piepho 2000; Verbyla et al.

2003; Boer et al. 2007). Molecular markers are

included as random effects usually when the goal is

simply to control for residual genetic variation, as

done by Wang et al. (1999), or to model QTL 9 E

interaction, as done by Piepho (2000) and Verbyla

et al. (2003). Conversely, fixed genetic predictors

represent positions of specific interest in the genome,

whose effects are to be estimated, as done by Piepho

(2000) and Boer et al. (2007), among others. We

considered QTLs as fixed effects, which allowed for

the estimation of specific QTL effects for each site and

harvest, given that the latter were also included as

fixed. Such an approach is more appropriate to study

QTL 9 E interaction than the stability of QTL

expression (Piepho 2000). Due to the absence of

shrinkage of fixed effects, it is important to emphasize

that QTL effect estimates are overestimated and

excessively optimistic (Boer et al. 2007), not to

mention the well-known overestimation of QTL

effects when the progeny sample size is small (Beavis

1994).

There are two contrasting approaches to analyzing

G 9 E interaction from multi-environment data: one-

stage analysis uses individual plot data as input and fits

a statistical model simultaneously to all environments,

while under the two-stage scheme, separate models are

initially fit to each environment, from which BLUEs

(best linear unbiased estimates) are obtained for each

genotype to compose a genotype 9 environment table

of means. The second step then consists of using this

table, weighted or not, to model the G 9 E interaction

(Smith et al. 2005; Welham et al. 2010). The first

approach yields maximum statistical power and elim-

inates biases in effect estimation, while the latter

speeds up analyses and allows a much greater amount

of data to be handled, at the cost of (potentially) biased

results and reduced power, and hence should be seen

as an approximation. The present work had 4032

available data points, a reasonably small number that

enabled a single-stage analysis to be conducted.

Analysis for individual traits did not provide, in any

linkage group, strong evidence in favor of the linkedQTL

hypothesis. Therefore, we kept positions unchanged and

estimated final effects jointly for all traits. According to

the effectj j � 2� standard deviation criterion (Fig. 2),

the 13 detected effects exhibited different pleiotropy

patterns. Only four of them expressed some influence

over the three traits, seven had effects over two traits,

and two terms affected a single trait. Pastina et al.

(2012), utilizing univariate mixed models for QTL

mapping with the same data, found a significant effect

for TCH on marker ESTB64m3C, which herein only

influenced fiber (QTL XII). However, closer inspec-

tion of QTL effects reveals that this marker also

marginally influenced TCH, particularly on the first

site (city of Piracicaba) (Online Resource 1). This

apparent discrepancy possibly indicates that the indi-

vidual significance criterion may not adequately

reflect the joint significance tested by the Wald

procedure. We noticed consistency between results

for QTL II on LG55, which influenced fiber in both

works, and for QTL IV on linkage group LG72, which

influenced TCH. Indeed, Fig. 3 shows that the most

pronounced peak in this linkage group happened

exactly for TCH. It is interesting to note that despite

the relatively large number of QTLs found in each

study, there was limited overlap between them. In

reality, only the three aforementioned effects were

detected in common. It is possible that the multivariate

analysis misses QTLs with (moderate) effects on a

single trait, while univariate mapping may fail to

identify QTLs with modest effects in each of the traits.

This makes it evident that the task of finding QTL is

not trivial and still deserves further investigation. In

particular, it is crucial to consider the particularities of

the QTL mapping study at hand, such as progeny

sample size, statistical model employed and search

strategy, when deriving conclusions about the genetic

architecture of any given trait.

In terms of the genetic correlation between traits,

84:6% of the effects (11 out of 13) influenced at least

two of the traits, that is, most QTLs were pleiotropic to

some degree. Furthermore, it is remarkable that all

QTL exhibited the same pattern of signs of effects. In

other words, all pleiotropic QTL contributed in the

direction of a positive genetic correlation between

fiber and TCH, but negative between fiber and POL

and between POL and TCH. Any deviations happened

only for minor effects, which were not statistically

significant. QTL effects followed the sign of pheno-

typic correlation between fiber and TCH. On the other
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hand, POL was phenotypically uncorrelated with fiber

and only marginally correlated with TCH, which does

not agree with the genetic correlations. Notwithstand-

ing, these negative genetic correlations reflect what

breeders usually observe in breeding practice, that is,

sugar content is genetically negatively correlated with

yield-related traits (Jackson 2005). This important

information at least partially explains the correlation

between these traits. If QTL contributing against the

phenotypic correlation had been found, they would

make it feasible for MAS to partially break the

correlation, through the selection of genotypes with

increased value for all traits. Evans (2002) proved

theoretically that pleiotropic QTLs opposing the

phenotypic correlation are more easily detected, since

hypothesis testing has greater power in that situation.

The fact that most QTLs herein described presented

the same correlation pattern provides evidence that

there really are no effects of a different nature in the

evaluated progeny.

Some causes of the QTL 9 E interaction could be

investigated. The detected QTL exhibited some type

of interaction, which can have important implications

for MAS. Specifically, it would not be feasible to

select for markers associated with QTLs with the same

effect in both sites and with unaltered effects across

years, which might be linked to stably expressed genes

with major effects. In fact, it would be beneficial to

select specific markers for each location, but whose

effects would potentially oscillate as a function of

different conditions throughout the years. These

results apparently contrast with those from Pastina

et al. (2012), where fewer interactions with sites were

detected. However, even though we found few QTLs

with fairly consistent effects, it is interesting to note

that we did not observe variations in the signs of

effects, neither across years within a given site nor

between sites for a given year. Thus, selection for any

QTL would not negatively affect genotype perfor-

mance in the other location. Moreover, we did observe

many QTLs that showed significant interaction with

sites and harvests, but with highly similar effects at the

six environments for isolated traits (Online Resource

1). When this happened, however, effects for the other

traits oscillated considerably, which probably caused

the Wald test for interactions to be significant, as this

procedure jointly tests all traits. Univariate analyses

would likely flag such QTLs as not interacting with

environments, for a subset of the traits, which may

partly explain differences in the extent of identified

QTL 9 E between both studies.

From a breeding perspective, these observations thus

collectively indicate that there is potential for selection

of QTLs with somewhat broader effects, but that most

of the effort has to be focused on QTLs for specific

locations. In any case, such narrow-effect QTLs would

not have detrimental effects in other (similar) environ-

ments. The nature of effect inconsistencies we observed

would not alter selection procedures, as we did not

detect crossover interactions, but suggests that selection

response could be strongly influenced by particular crop

conditions, hence limiting the efficiency of MAS.

Because the goal of most breeding programs is to

simultaneously improve various agronomically impor-

tant traits, the main advantage of employing multi-trait

analyses lies in depicting the pleiotropy patterns of

QTL, which point to the inability of MAS to break

undesirable genetic correlations.

Pastina et al. (2012) described the use of mixed

models for QTL mapping in outcrossing progenies

based on multi-environment data, but restricted their

analyses to a single trait and used an interval mapping

(IM) approach (Lander and Botstein 1989) to identify

putative QTLs, which were then fitted in a multiple-

QTL model to test hypotheses and estimate QTL

effects. More recently, Gazaffi et al. (2014) proposed

a fixed effects model for QTL mapping in full-sib

progenies that allows the segregation pattern of each

QTL to be evaluated. Nonetheless, it is based on the

CIM method and does not allow the analysis of

multiple traits or environments. Our model aims to

provide a complete framework for the QTL analysis of

MTME data from full-sib progenies, with explicit

modeling of genetic and residual (co)variances, more

realistic model searching strategies and also the

inclusion of epistatic interactions.

A notable advantage of the MIM method is that it

may include epistatic terms directly in the QTL

searching process (Kao and Zeng 1997; Kao et al.

1999). In the least-squares approximation context,

genetic predictors for epistatic effects can be obtained

by simply multiplying the appropriate genetic predic-

tors, as they are orthogonal. Because of the restricted

progeny size available in this study, we conducted

tentative, exploratory searches for epistasis between

the QTLs detected in our MTME dataset. We detected

eight QTL 9 QTL interaction terms involving nine of

the 13 QTLs. Interestingly, these epistatic interactions
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all displayed the same patterns of pleiotropy as the

detected QTL. Additionally, as observed for QTL,

epistatic terms extensively interacted with sites and/or

harvests, such that breeding values would have to be

calculated specifically for each environment, should

this information be used for selection. Podlich et al.

(2004) and Cooper et al. (2005) showed that epistatic

interactions between QTL and the genetic back-

ground, in combination with QTL 9 E interaction,

can be important for MAS.

Some authors have performed searches for epistatic

effects through digenic approaches and analysis of

variance or regression models (Hoarau et al. 2002;

Aitken et al. 2006, 2008), but the lack of residual

genetic variation control usually results in high false

positive rates (Wang et al. 1999). The latter authors

stated that just as the inclusion of cofactors in the CIM

model successfully controls the influence of residual

genetic variation in QTL mapping in the absence of

epistasis, the inclusion of interacting markers linked to

epistatic QTL increases power, accuracy and precision

of QTL mapping. Our MIM approach allows these

advantages to be achieved through the inclusion of

epistasis as fixed or random effects in the model.

This is the only work, to the best of our knowledge,

to make use of a multivariate mixed model for

pleiotropic QTL searching with joint modeling of

QTL 9 E interaction in sugarcane. Such a methodol-

ogy has as its main advantages increased statistical

power and reduced rates of false positives, which,

collectively, make conclusions more reliable (Piepho

2005; Malosetti et al. 2008). Single-stage analysis

with direct modeling of genetic (co)variances reduces

biases and makes QTL effect estimates valid for MAS

(Welham et al. 2010). Moreover, fitting multiple

QTLs in a single joint model allows for breeding

value estimates to be obtained, which can subse-

quently be leveraged by breeding programs. Even so,

there is substantial room for improvement of the

employed methodology, and extensive future efforts

are still required. First, the mapping model hereby

used was developed for diploid species, for which it is

not possible for alleles to be present in multiple

dosages, such that our conclusions are also approxi-

mations. It is necessary to develop molecular markers

that allow precise estimates of the number of alleles to

be obtained. To that end, there is ongoing work aiming

at high-throughput SNP genotyping of polyploid

species such as sugarcane (Serang et al. 2012; Garcia

et al. 2013). Next, genetic mapping methodology for

polyploids must be further developed to take these

markers into account. Furthermore, QTL mapping

models capable of estimating quantitative effects of

multiple doses must be devised. Finally, although the

integration of markers segregating 1:1 and 3:1 in a

single map is an advancement in comparison with the

two-way pseudo-testcross, we only used SDMs to

construct the linkage map and discarded markers with

larger copy numbers, thus reducing genome coverage.

Lower marker saturation can be noted by the small

number of markers per group, the small length of

linkage groups and the fact that many linkage groups

could not be integrated, as a result of the exclusive

presence of D1 or D2 markers.

Nonetheless, despite the inherent limitations of the

dataset, one-stage MTME analysis in sugarcane

extracted unbiased information with high power from

the data. Modeling of (co)variances through mixed

models dismissed the need for unrealistic assump-

tions. Finally, the biological foundations of MIM

culminated in easily interpretable results with poten-

tial application to breeding programs, especially

through the enhanced understanding of the genetic

architecture of important agronomic traits, as well as

the possibility of estimating breeding values directly

from the QTL model. The coupling of these advan-

tages makes this methodology genuinely appropriate

for handling data of this nature.
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