1,096 research outputs found

    Graph Partitioning with Fujitsu Digital Annealer

    Full text link
    Graph partitioning, or community detection, is the cornerstone of many fields, such as logistics, transportation and smart power grids. Efficient computation and efficacious evaluation of communities are both essential, especially in commercial and industrial settings. However, the solution space of graph partitioning increases drastically with the number of vertices and subgroups. With an eye to solving large scale graph partitioning and other optimization problems within a short period of time, the Digital Annealer (DA), a specialized CMOS hardware also featuring improved algorithms, has been devised by Fujitsu Ltd. This study gauges Fujitsu DA's performance and running times. The modularity was implemented as both the objective function and metric for the solutions. The graph partitioning problems were formatted into Quadratic Unconstrained Binary Optimization (QUBO) structures so that they could be adequately imported into the DA. The DA yielded the highest modularity among other studies when partitioning Karate Club, Les Miserables, American Football, and Dolphin. Moreover, the DA was able to partition the Case 1354pegase power grid network into 45 subgroups, calling for 60,930 binary variables, whilst delivering optimal modularity results within a solving time of roughly 80 seconds. Our results suggest that the Fujitsu DA can be applied for rapid and efficient optimization for graph partitioning

    USING A LEAST SQUARES SUPPORT VECTOR MACHINE TO ESTIMATE A LOCAL GEOMETRIC GEOID MODEL

    Get PDF
    In this study, test-region global positioning system (GPS) control points exhibitingknown first-order orthometric heights were employed to obtain the points of planecoordinates and ellipsoidal heights by using the real-time GPS kinematicmeasurement method. Plane-fitting, second-order curve-surface fitting, back-propagation (BP) neural networks, and least-squares support vector machine (LS-SVM) calculation methods were employed. The study includes a discussion on dataintegrity and localization, changing reference-point quantities and distributions toobtain an optimal solution. Furthermore, the LS-SVM was combined with localgeoidal-undulation models that were established by researching and analyzing3kernel functions. The results indicated that the overall precision of the localgeometric geoidal-undulation values calculated using the radial basis function(RBF) and third-order polynomial kernel function was optimal and the root meansquare error (RMSE) was approximately ± 1.5 cm. These findings demonstrated thatthe LS-SVM provides a rapid and practical method for determining orthometricheights and should serve as a valuable academic reference regarding local geoidmodels

    SARS-CoV Regulates Immune Function-Related Gene Expressions in Human Monocytic Cells

    Get PDF
    Background: Severe Acute Respiratory Syndrome (SARS) is characterized by acute respiratory distress (ARDS) and pulmonary fibrosis, and the monocyte/macrophage is the key player in the pathogenesis of SARS.
 
Methods: In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV) infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection and the gene expression was profiled by oligonucleotide-based microarray. 

Results: Analysis of immune-related gene expression profiles showed that 24 h after SARS-CoV infection, (i) IFN-alpha/beta-inducible and cathepsin/proteosome genes were down-regulated; (ii) the hypoxia/hyperoxia-related genes were up-regulated; and (iii) the TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, the lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. 

Conclusion: These results elucidate that monocyte/macrophage dysfunction and dysregulation of fibrosis-related genes are two important pathogenic events of SARS. 
&#xa

    High Altitude Pulmonary Edema in a Patient with Previous Pneumonectomy

    Get PDF
    High altitude pulmonary edema (HAPE) is a life-threatening illness that can occur in individuals ascending to altitudes exceeding 2400 m. The risk factors are rapid ascent, physical exertion and a previous history of HAPE. This work presents a case study of a 74-year-old man who underwent left side pneumonectomy 40 years ago and subsequently experienced several instances of HAPE. The well-known risk factors for HAPE were excluded in this patient. We suspect that the post-pneumonectomy condition may be a risk factor for HAPE based on this case. [J Formos Med Assoc 2007;106(4):320-322

    1,5-Bis(4-bromo­phen­yl)-3-phenyl­pentane-1,5-dione

    Get PDF
    The asymmetric unit of the title compound, C23H18Br2O2, contains two independent mol­ecules with slightly different conformations. In the absence of classical inter­molecular inter­actions, the crystal packing is stabilized by van der Waals forces

    Experimental and Numerical Study of Tsunami Wave Propagation and Run-Up on Sloping Beaches

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Levels of protein C and soluble thrombomodulin in critically ill patients with acute kidney injury: a multicenter prospective observational study.

    Get PDF
    Endothelial dysfunction contributes to the development of acute kidney injury (AKI) in animal models of ischemia reperfusion injury and sepsis. There are limited data on markers of endothelial dysfunction in human AKI. We hypothesized that Protein C (PC) and soluble thrombomodulin (sTM) levels could predict AKI. We conducted a multicenter prospective study in 80 patients to assess the relationship of PC and sTM levels to AKI, defined by the AKIN creatinine (AKI Scr) and urine output criteria (AKI UO). We measured marker levels for up to 10 days from intensive care unit admission. We used area under the curve (AUC) and time-dependent multivariable Cox proportional hazard model to predict AKI and logistic regression to predict mortality/non-renal recovery. Protein C and sTM were not different in patients with AKI UO only versus no AKI. On intensive care unit admission, as PC levels are usually lower with AKI Scr, the AUC to predict the absence of AKI was 0.63 (95%CI 0.44-0.78). The AUC using log10 sTM levels to predict AKI was 0.77 (95%CI 0.62-0.89), which predicted AKI Scr better than serum and urine neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C, urine kidney injury molecule-1 and liver-fatty acid-binding protein. In multivariable models, PC and urine NGAL levels independently predicted AKI (p=0.04 and 0.02) and PC levels independently predicted mortality/non-renal recovery (p=0.04). In our study, PC and sTM levels can predict AKI Scr but are not modified during AKI UO alone. PC levels could independently predict mortality/non-renal recovery. Additional larger studies are needed to define the relationship between markers of endothelial dysfunction and AKI

    Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells

    Get PDF
    The dentate gyrus (DG) is the primary gate of the hippocampus and controls information flow from the cortex to the hippocampus proper. To maintain normal function, granule cells (GCs), the principal neurons in the DG, receive fine- tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs). Abnormalities of GABAergic circuits in the DG are associated with several brain disorders, including epilepsy, autism, schizophrenia, and Alzheimer disease. Therefore, understanding the network mechanisms of inhibitory control of GCs is of functional and pathophysiological importance. GABAergic inhibitory INs are heterogeneous, but it is unclear how individual subtypes contribute to GC activity. Using cell-type-specific optogenetic perturbation, we investigated whether and how two major IN populations defined by parvalbumin (PV) and somatostatin (SST) expression, regulate GC input transformations. We showed that PV-expressing (PV+) INs, and not SST- expressing (SST+) INs, primarily suppress GC responses to single cortical stimulation. In addition, these two IN classes differentially regulate GC responses to θ and γ frequency inputs from the cortex. Notably, PV+ INs specifically control the onset of the spike series, whereas SST+ INs preferentially regulate the later spikes in the series. Together, PV+ and SST+ GABAergic INs engage differentially in GC input-output transformations in response to various activity patterns
    corecore