141 research outputs found

    Analytical Coding: Performing Qualitative Data Analysis Based on Programming Principles

    Get PDF
    In this paper, we argue that qualitative data analysis software lacks a tool that can be used to fulfill an algorithmic evaluation of conceptualization carried out in qualitative studies. We propose the context-oriented models of coding that conjugate single codes, that is, brief denotations made in natural language, by unusual local relationships called context-fixed elucidation (CFE). CFE is a local relationship between miscellaneous aspects of a case under study. The set of separate CFEs, originated by the analyst during conceptualization and called thesaurus, represents the case as a whole. On the basis of CFE structure and using the thesaurus’ single codes as data, there is proposed an algorithm which calculates, without the involvement of the expert, whether there is or not global coherence of single codes used by analyst within the thesaurus. The tool thus obtained emulates for the codes originated in qualitative study the relationships known in the object-oriented programming, such as polymorphism, visibility, encapsulation, inheritance. A probe application of the new tool is demonstrated by the conceptualization of textual evidence. The application was performed with the help of a pilot computer package which architecture is based on the context-oriented models. Thanks to the models, QDAS can obtain special tools that would make researchers\u27 analytical work more intelligible and coherent. The models proposed can find applications outside of research discourse including computer technologies used in various social spheres where people communicate in natural language

    Probabilistic Modeling Processes for Oil and Gas

    Get PDF
    Different uncertainties are researched for providing safe and effective development of hydrocarbon deposits and rational operation of oil and gas systems (OGS). The original models and methods, applicable in education and practice for solving problems of system engineering, are proposed. These models allow us to analyze natural and technogenic threats for oil and gas systems on a probabilistic level for a given prognostic time. Transformation and adaptation of models are demonstrated by examples connected with non-destructive testing. The measures of counteraction to threats for the typical manufacturing processes of gas preparation equipment on enterprise are analyzed. The risks for pipelines, pumping liquefied natural gas across the South American territory, are predicted. Results of probabilistic modeling of the sea gas and oil-producing systems from their vulnerability point of view (including various scenarios of possible terrorist influences) are analyzed and interpreted

    ВОДОТРУБНО-ДЫМОГАРНЫЙ КОТЕЛ: ЧИСЛОВОЕ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ЭКСПЕРИМЕНТ

    Get PDF
    The improvement of natural gas use technologies in water-heating boilers is considered. The concept of a new watertube smoke tube boiler, created on the basis of the screen radial tube bundle placement in the space of a cylindrical heat pipe-furnace. The results of numerical computer simulation of the furnace process in the 630 kW watertube smoke tube boiler are compared with the corresponding data obtained during the experiment. The analysis of the results of numerical computer simulation reveals the efficiency of the installed tube radial bundle: the total heat perception in the furnace increased by 56 %, while the growth of the part of the heat transferred by convective heat exchange occurred by 22 %; the temperature level in the furnace volume has decreased, while the concentration of nitrogen oxides has decreased by 45–51 %. It is experimentally established that the presence of the cooled screen tube radial bundle in the furnace of the watertube smoke tube boiler makes it possible: to increase heat release rate in the furnace volume by 10 %; to reduce the concentration of nitrogen oxides and carbon monoxide in flue gases by 24–40 % and 25–67 % respectively (resulting in a compliance of the level of pollutant emission to the requirements of the Ukrainian national regulations, viz. GOST 30735–2001); reduce the excess air in the furnace by 3 % and increase the efficiency of the boiler by 0.5 %. The pre-production prototype of the water-heating smoke tube boiler (KVVD-0.63 Gn) has passed the certification tests, state registration; the boiler has been adopted in permanent operation. The boiler is not complicated in manufacturing, and producible in the conditions of municipal heating network companies. The reliability of the boiler's design has been confirmed by the experience of many years of functioning.Рассмотрено усовершенствование технологий использования природного газа в водогрейных котлах. Предложена концепция нового водотрубно-дымогарного котла, созданного на основе размещения в пространстве цилиндрической жаровой трубы-топки экранного радиального трубного пучка. Результаты числового компьютерного моделирования топочного процесса водотрубно-дымогарного котла тепловой мощностью 630 кВт сравнивались с соответствующими данными, полученными в ходе эксперимента. Анализ результатов числового компьютерного моделирования свидетельствует об эффективности установленного трубного радиального пучка: на 56 % увеличилось общее тепловосприятие топки, при этом на 22 % выросла часть теплоты, переданной конвективным теплообменом; снизился уровень температуры в топочном пространстве, при этом на 45–51 % сократилась концентрация оксидов азота. Экспериментально установлено, что наличие охлаждаемого экранного трубного радиального пучка в топке водотрубно-дымогарного котла позволяет: увеличить тепловое напряжение топочного объема на 10 %; сократить концентрацию оксидов азота и монооксида углерода в дымовых газах на 24–40 % и на 25–67 % соответственно, при этом уровень выбросов вредных веществ удовлетворяет требованиям норм Украины (ГОСТ 30735–2001); снизить избыток воздуха в топке на 3 % и повысить КПД котла на 0,5 %. Опытный образец водогрейного водотрубно-дымогарного котла (КВВД-0,63 Гн) прошел сертификационные испытания, государственную регистрацию, принят в постоянную эксплуатацию. Котел прост в изготовлении и может производиться в условиях предприятий коммунальных тепловых сетей. Надежность конструкции котла подтверждается опытом многолетней эксплуатации

    Localized Mechanical Actuation using pn Junctions

    Get PDF
    We are reporting on the fabrication and characterization of microscale electromechanical actuators driven by the internal forces induced within the depletion region of a typical pn junction. Depletion region actuators operate based on the modulation of the interactions of the internal electric field and the net space charge within the depletion region of a pn junction by an external potential. In terms of performance, depletion region actuators fall between electrostatic actuators, where a physical gap separates the charges on two electrodes, and piezoelectric actuators, where the separation between the charges is on the order of lattice constants of the material. An analytic model of depletion region actuator response to an applied potential is developed and verified experimentally. The prototype micro-mechanical device utilized the local stresses produced by the depletion region actuators to generate mechanical vibrations at frequencies far below the resonance frequencies of the structure. A laser Doppler vibrometer was used to measure and compare the displacements and vibration patterns caused by the depletion region and electrostatic actuators. Utilizing depletion region actuators neither requires etching of narrow gaps, which is technically challenging nor is there a need for introducing piezoelectric materials into the fabrication process flow. The simple operating principle and the possibility of exploiting the technique for various optimized linear or nonlinear actuation at small scales provide opportunities for precise electro-mechanical transduction for micro- and nano-mechanical devices. These actuators are therefore suited for the co-fabrication of micro- and nano-mechanical systems and microelectronic circuits. Additionally, the produced strains depend only on the depletion region specifications and the excitation voltage and do not scale with device dimensions. As such, depletion region actuators can be candidates for efficient nanoscale electromechanical actuation

    How effectively do carbon nanotube inclusions contribute to theelectromagnetic performance of a composite material? Estimation criteria from microwave and terahertz measurements

    Get PDF
    Screening effect in finite-length carbon nanotubes (CNT) and their agglomerates hinders significantly the electromagnetic interaction in composite materials. Screening effect is strong in the microwave range, and it decreases with increasing frequency resulting in a strong frequency dependence of the effective conductivity of the composite. Since screening effect is rather small in the terahertz range, the effective conductivity in this range is determined directly by the intrinsic conductivity of the inclusions. The ratio of the microwave to terahertz effective conductivities was proposed as a parameter to estimate how effectively carbon nanotube inclusions contribute to the electromagnetic performance of composite materials in the microwave range. CNT film was considered as a material where maximal possible interaction of the CNTs with EM field occurs. Single-walled CNT films and CNT-based composite materials, as well as hybrid film comprising mixtures of WS2 nanotubes and CNTs were fabricated and measured in the microwave and terahertz ranges. The electromagnetic field interaction with the inclusions has been estimated for all the samples fabricated

    How effectively do carbon nanotube inclusions contribute to the electromagnetic performance of a composite material? Estimation criteria from microwave and terahertz measurements

    Get PDF
    Screening effect in finite-length carbon nanotubes (CNT) and their agglomerates hinders significantly the electromagnetic interaction in composite materials. Screening effect is strong in the microwave range, and it decreases with increasing frequency resulting in a strong frequency dependence of the effective conductivity of the composite. Since screening effect is rather small in the terahertz range, the effective conductivity in this range is determined directly by the intrinsic conductivity of the inclusions. The ratio of the microwave to terahertz effective conductivities was proposed as a parameter to estimate how effectively carbon nanotube inclusions contribute to the electromagnetic performance of composite materials in the microwave range. CNT film was considered as a material where maximal possible interaction of the CNTs with EM field occurs. Single-walled CNT films and CNT-based composite materials, as well as hybrid film comprising mixtures of WS2 nanotubes and CNTs were fabricated and measured in the microwave and terahertz ranges. The electromagnetic field interaction with the inclusions has been estimated for all the samples fabricated

    Traces of explosive volcanic eruptions in the Upper Ordovician of the Siberian Platform

    Get PDF
    © 2014, Estonian Academy Publishers. All rights reserved. Ordovician K-bentonite beds have a long history of investigation all around the world. They have been reported from Gondwana, the Argentine Precordillera, the Yangtze Platform, Laurentia, Baltica, and numerous terrains between Gondwana and Baltica, which now constitute a part of Europe. In recent years several K-bentonite beds have also been discovered in the Upper Ordovician of the Siberian Platform. This discovery is significant not only for their value in local and regional chronostratigraphic correlation but also for global geochronology, paleogeography, paleotectonic and paleoclimatic reconstructions. All in all, eight individual K-bentonite beds have been identified in the Baksian, Dolborian and Burian regional stages, which correspond roughly to the Upper Sandbian–Katian Global Stages. Zircon crystals from the uppermost K-bentonite bed within the Baksian regional stage provide a 206Pb/238U age of 450.58 ± 0.27 Ma. We will present preliminary results of the study of the three lowermost beds from the Baksian Regional Stage and suggest that the Taconic–Enisej (also spelled Yenisei or Yenisey) volcanic arc was continuous along the western margin of Siberia

    Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes

    Get PDF
    Crop productivity strongly depends on several biotic and abiotic factors. Salinity is one of the most important abiotic factors, besides drought, extreme temperatures, light and metal stress. The enhanced burden of secondary salinization induced through anthropogenic activities increases pressure on glycophytic crop plants. The recent isolation and characterization of salt tolerance genes encoding signaling components from halophytes, which naturally grow in high salinity, has provided tools for the development of transgenic crop plants with improved salt tolerance and economically beneficial traits. In addition understanding of the differences between glycophytes and halophytes with respect to levels of salinity tolerance is also one of the prerequisite to achieve this goal. Based on the recent developments in mechanisms of salt tolerance in halophytes, we will explore the potential of introducing salt tolerance by choosing the available genes from both dicotyledonous and monocotyledonous halophytes, including the salt overly sensitive system (SOS)-related cation/proton antiporters of plasma (NHX/SOS1) and vacuolar membranes (NHX), energy-related pumps, such as plasma membrane and vacuolar H+ adenosine triphosphatase (PM& V-H+ATPase), vacuolar H+ pyrophosphatases (V-H+PPase) and potassium transporter genes. Various halophyte genes responsible for other processes, such as crosstalk signaling, osmotic solutes production and reactive oxygen species (ROS) suppression, which also enhance salt tolerance will be described. In addition, the transgenic overexpression of halophytic genes in crops (rice, peanut, finger millet, soybean, tomato, alfalfa, jatropha, etc.) will be discussed as a successful mechanism for the induction of salt tolerance. Moreover, the advances in genetic engineering technology for the production of genetically modified crops to achieve the improved salinity tolerance under field conditions will also be discussed

    Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy

    Get PDF
    In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2–3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5–3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm−2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear–quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P < 0.01) and confirmed that the neutron source and irradiation regimen were sufficient for control over cell colony formation. We believe our study will serve as a model for ongoing in vitro experiments on neutron capture therapy to advance in this area for further development of accelerator-based BNCT into the clinical phase
    corecore