89 research outputs found

    Luminescent hyperbolic metasurfaces.

    Get PDF
    When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells

    The Minimum Shared Edges Problem on Grid-like Graphs

    Full text link
    We study the NP-hard Minimum Shared Edges (MSE) problem on graphs: decide whether it is possible to route pp paths from a start vertex to a target vertex in a given graph while using at most kk edges more than once. We show that MSE can be decided on bounded (i.e. finite) grids in linear time when both dimensions are either small or large compared to the number pp of paths. On the contrary, we show that MSE remains NP-hard on subgraphs of bounded grids. Finally, we study MSE from a parametrised complexity point of view. It is known that MSE is fixed-parameter tractable with respect to the number pp of paths. We show that, under standard complexity-theoretical assumptions, the problem parametrised by the combined parameter kk, pp, maximum degree, diameter, and treewidth does not admit a polynomial-size problem kernel, even when restricted to planar graphs

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    Convexity in partial cubes: the hull number

    Full text link
    We prove that the combinatorial optimization problem of determining the hull number of a partial cube is NP-complete. This makes partial cubes the minimal graph class for which NP-completeness of this problem is known and improves some earlier results in the literature. On the other hand we provide a polynomial-time algorithm to determine the hull number of planar partial cube quadrangulations. Instances of the hull number problem for partial cubes described include poset dimension and hitting sets for interiors of curves in the plane. To obtain the above results, we investigate convexity in partial cubes and characterize these graphs in terms of their lattice of convex subgraphs, improving a theorem of Handa. Furthermore we provide a topological representation theorem for planar partial cubes, generalizing a result of Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure

    Computing small pivot-minors.

    Get PDF
    A graph G contains a graph H as a pivot-minor if H can be obtained from G by applying a sequence of vertex deletions and edge pivots. Pivot-minors play an important role in the study of rank-width. However, so far, pivot-minors have only been studied from a structural perspective. We initiate a systematic study into their complexity aspects. We first prove that the PIVOT-MINOR problem, which asks if a given graph G contains a given graph H as a pivot-minor, is NP-complete. If H is not part of the input, we denote the problem by H-PIVOT-MINOR. We give a certifying polynomial-time algorithm for H -PIVOT-MINOR for every graph H with |V(H)|≤4|V(H)|≤4 except when H∈{K4,C3+P1,4P1}H∈{K4,C3+P1,4P1}, via a structural characterization of H-pivot-minor-free graphs in terms of a set FHFH of minimal forbidden induced subgraphs

    How Mistimed and Unwanted Pregnancies Affect Timing of Antenatal Care Initiation in three Districts in Tanzania

    Get PDF
    Early antenatal care (ANC) initiation is a doorway to early detection and management of potential complications associated with pregnancy. Although the literature reports various factors associated with ANC initiation such as parity and age, pregnancy intentions is yet to be recognized as a possible predictor of timing of ANC initiation. Data originate from a cross-sectional household survey on health behaviour and service utilization patterns. The survey was conducted in 2011 in Rufiji, Kilombero and Ulanga districts in Tanzania on 910 women of reproductive age who had given birth in the past two years. ANC initiation was considered to be early only if it occurred in the first trimester of pregnancy gestation. A recently completed pregnancy was defined as mistimed if a woman wanted it later, and if she did not want it at all the pregnancy was termed as unwanted. Chisquare was used to test for associations and multinomial logistic regression was conducted to examine how mistimed and unwanted pregnancies affect timing of ANC initiation. Although 49.3% of the women intended to become pregnant, 50.7% (34.9% mistimed and 15.8% unwanted) became pregnant unintentionally. While ANC initiation in the 1st trimester was 18.5%, so was 71.7% and 9.9% in the 2nd and 3rd trimesters respectively. Multivariate analysis revealed that ANC initiation in the 2nd trimester was 1.68 (95% CI 1.10‒2.58) and 2.00 (95% CI 1.05‒3.82) times more likely for mistimed and unwanted pregnancies respectively compared to intended pregnancies. These estimates rose to 2.81 (95% CI 1.41‒5.59) and 4.10 (95% CI 1.68‒10.00) respectively in the 3rd trimester. We controlled for gravidity, age, education, household wealth, marital status, religion, district of residence and travel time to a health facility. Late ANC initiation is a significant maternal and child health consequence of mistimed and unwanted pregnancies in Tanzania. Women should be empowered to delay or avoid pregnancies whenever they need to do so. Appropriate counseling to women, especially those who happen to conceive unintentionally is needed to minimize the possibility of delaying ANC initiation.\u

    Efficient Enumeration of Bipartite Subgraphs in Graphs

    Full text link
    Subgraph enumeration problems ask to output all subgraphs of an input graph that belongs to the specified graph class or satisfy the given constraint. These problems have been widely studied in theoretical computer science. As far, many efficient enumeration algorithms for the fundamental substructures such as spanning trees, cycles, and paths, have been developed. This paper addresses the enumeration problem of bipartite subgraphs. Even though bipartite graphs are quite fundamental and have numerous applications in both theory and application, its enumeration algorithms have not been intensively studied, to the best of our knowledge. We propose the first non-trivial algorithms for enumerating all bipartite subgraphs in a given graph. As the main results, we develop two efficient algorithms: the one enumerates all bipartite induced subgraphs of a graph with degeneracy kk in O(k)O(k) time per solution. The other enumerates all bipartite subgraphs in O(1)O(1) time per solution
    • …
    corecore