42 research outputs found

    Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation

    Get PDF
    Objectives: Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back - a combination of movements which equates to tibial internal/femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements in situ/in vivo. Methods: The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m2 (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities. Results: During maximally flexed kneeling and lunging activities, the mean tibial internal rotation was 8° (standard deviation (SD) 6). At a mean 112° flexion (SD 16) during lunging, the medial and lateral condyles were a mean of 2 mm (SD 3) and 8 mm (SD 4) posterior to a transverse line passing through the centre of the medial tibial concavity. With a mean flexion of 117° (SD 14) during kneeling, the medial and lateral condyles were a mean of 1 mm (SD 4) anterior and 6 mm (SD 4) posterior to the same line. During dynamic stair and pivoting activities, there was a mean anteroposterior translation of 0 mm to 2 mm of the medial femoral condyle. Backward lateral condylar translation occurred and was linearly related to tibial rotation. Conclusion: The GMK Sphere TKA in our study group shows movements similar in pattern, although reduced in magnitude, to those in recent reports relating to normal knees during several activities. Specifically, little or no translation of the medial femoral condyle was observed during flexion, but there was posterior roll-back of the lateral femoral condyle, equating to tibiofemoral rotation. We conclude that the GMK Sphere is anteroposteriorly stable medially and permits rotation about the medial compartment

    Gating a single-molecule transistor with individual atoms

    Get PDF
    Transistors, regardless of their size, rely on electrical gates to control the conductance between source and drain contacts. In atomic-scale transistors, this conductance is sensitive to single electrons hopping via individual orbitals1, 2. Single-electron transport in molecular transistors has been previously studied using top-down approaches to gating, such as lithography and break junctions1, 3, 4, 5, 6, 7, 8, 9, 10, 11. But atomically precise control of the gate—which is crucial to transistor action at the smallest size scales—is not possible with these approaches. Here, we used individual charged atoms, manipulated by a scanning tunnelling microscope12, to create the electrical gates for a single-molecule transistor. This degree of control allowed us to tune the molecule into the regime of sequential single-electron tunnelling, albeit with a conductance gap more than one order of magnitude larger than observed previously8, 11, 13, 14. This unexpected behaviour arises from the existence of two different orientational conformations of the molecule, depending on its charge state. Our results show that strong coupling between these charge and conformational degrees of freedom leads to new behaviour beyond the established picture of single-electron transport in atomic-scale transistors

    Cancer risks from arsenic in drinking water.

    Get PDF
    Ingestion of arsenic, both from water supplies and medicinal preparations, is known to cause skin cancer. The evidence assessed here indicates that arsenic can also cause liver, lung, kidney, and bladder cancer and that the population cancer risks due to arsenic in U.S. water supplies may be comparable to those from environmental tobacco smoke and radon in homes. Large population studies in an area of Taiwan with high arsenic levels in well water (170-800 micrograms/L) were used to establish dose-response relationships between cancer risks and the concentration of inorganic arsenic naturally present in water supplies. It was estimated that at the current EPA standard of 50 micrograms/L, the lifetime risk of dying from cancer of the liver, lung, kidney, or bladder from drinking 1 L/day of water could be as high as 13 per 1000 persons. It has been estimated that more than 350,000 people in the United States may be supplied with water containing more than 50 micrograms/L arsenic, and more than 2.5 million people may be supplied with water with levels above 25 micrograms/L. For average arsenic levels and water consumption patterns in the United States, the risk estimate was around 1/1000. Although further research is needed to validate these findings, measures to reduce arsenic levels in water supplies should be considered

    Coronary Artery Calcium Progression Is Associated With Coronary Plaque Volume Progression Results From a Quantitative Semiautomated Coronary Artery Plaque Analysis

    No full text
    OBJECTIVES The aim of this study was to determine whether coronary artery calcium (CAC) progression was associated with coronary plaque progression on coronary computed tomographic angiography.BACKGROUND CAC progression and coronary plaque characteristics are associated with incident coronary heart disease. However, natural history of coronary atherosclerosis has not been well described to date, and the understanding of the association between CAC progression and coronary plaque subtypes such as noncalcified plaque progression remains unclear.METHODS Consecutive patients who were referred to our clinic for evaluation and had serial coronary computed tomography angiography scans performed were included in the study. Coronary artery plaque (total, fibrous, fibrous-fatty, low-attenuation, densely calcified) volumes were calculated using semiautomated plaque analysis software.RESULTS A total of 211 patients (61.3 +/- 12.7 years of age, 75.4% men) were included in the analysis. The mean interval between baseline and follow-up scans was 3.3 +/- 1.7 years. CAC progression was associated with a significant linear increase in all types of coronary plaque and no plaque progression was observed in subjects without CAC progression. In multivariate analysis, annualized and normalized total plaque (beta = 0.38; p < 0.001), noncalcified plaque (beta = 0.35; p = 0.001), fibrous plaque (beta = 0.56; p < 0.001), and calcified plaque (beta = 0.63; p = 0.001) volume progression, but not fibrous-fatty (beta = 0.03; p = 0.28) or low-attenuation plaque (beta = 0.11; p = 0.1) progression, were independently associated with CAC progression. Plaque progression did not differ between the sexes. A significantly increased total and calcified plaque progression was observed in statin users.CONCLUSIONS In a clinical practice setting, progression of CAC was significantly associated with an increase in both calcified and noncalcified plaque volume, except fibrous-fatty and low-attenuation plaque. Serial CAC measurements may be helpful in determining the need for intensification of preventive treatment. (C) 2018 by the American College of Cardiology Foundation.Cardiovascular Aspects of Radiolog
    corecore