68 research outputs found

    N-glycan mediated shielding of ADAMTS13 prevents binding of pathogenic autoantibodies in immune-mediated TTP

    Get PDF
    Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder caused by the development of autoantibodies targeting different domains of ADAMTS13. Profiling studies have shown that residues R568, F592, R660, Y661, and Y665 within exosite-3 of the spacer domain provide an immunodominant region of ADAMTS13 for pathogenic autoantibodies that develop in patients with iTTP. Modification of these 5 core residues with the goal of reducing autoantibody binding revealed a significant tradeoff between autoantibody resistance and proteolytic activity. Here, we employed structural bioinformatics to identify a larger epitope landscape on the ADAMTS13 spacer domain. Models of spacer-antibody complexes predicted that residues R568, L591, F592, K608, M609, R636, L637, R639, R660, Y661, Y665, and L668 contribute to an expanded epitope within the spacer domain. Based on bioinformatics-guided predictions, we designed a panel of N-glycan insertions in this expanded epitope to reduce the binding of spacer domain autoantibodies. One N-glycan variant (NGLY3-ADAMTS13, containing a K608N substitution) showed strongly reduced reactivity with TTP patient sera (28%) as compared with WT-ADAMTS13 (100%). Insertion of an N-glycan at amino acid position 608 did not interfere with processing of von Willebrand factor, positioning the resulting NGLY3-ADAMTS13 variant as a potential novel therapeutic option for treatment of iTTP

    Presence and evolution of NET markers and DAMPS in critically ill COVID-19 patients

    Get PDF
    Resumen del trabajo presentado en el 4th European Congress on Thrombosis and Haemostasis, celebrado en Gante (BĂ©lgica), los dĂ­as 14 y 15 de octubre de 2021Background: The coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection presents with a wide range of disease symptoms. In the more severe patients, COVID-19 is associated with respiratory failure, neutrophil extracellular trap (NET) formation, and multiple organ failure (MOF). Aims: We investigated the presence and evolution of several damage associated molecular patterns (DAMPs) neutrophil markers and immune modulators in a group of 100 COVID-19-positive ICU patients. Methods: Citrated plasma was collected from adult patients with confirmed COVID-19 by PCR detection of SARS-CoV-2 E and N-genes in nasopharyngeal swabs admitted to the intensive care unit (ICU) at Uppsala University hospital, Sweden. Written informed consent was obtained from the patients, or next of kin if the patient was unable to give consent. The Declaration of Helsinki and its subsequent revisions were followed. Plasma concentration of cell free DNA (cfDNA), extracellular histone H3 (H3), neutrophil elastase (NE), myeloperoxidase (MPO) and the cfDNA-MPO complex, and the immune modulators GAS6, and sAXL were measured in all COVID-19-positive and in COVID-19-negative patients and healthy controls. We determined marker levels upon admission, of their evolution, and correlation with disease severity, organ failure, thromboembolic events, mortality, and other blood parameters. Results: The level of cfDNA, H3, NE, MPO, cfDNA-MPO complex, GAS6, and sAXL were all significantly increased in plasma of COVID-19 patients compared to controls. Importantly, a diminution of cfDNA and GAS6 levels over time was observed in patients surviving 30 days after ICU admission. Histone H3 levels were detected in 40% of the COVID-19 patient plasma at ICU admission and the presence of histone H3 during ICU stay was associated with an increased risk of thromboembolic events and secondary infection. Though NET markers were not predictive of 30-day mortality, they correlated with several parameters of tissue damage and neutrophil counts. Summary/Conclusion: The increased presence of cfDNA, H3 and NE, MPO, and MPO-DNA illustrates the severity of cellular damage and indicates activation of NETosis in severe COVID-19 ICU patients. The evolution of cfDNA and Gas6 is able to predict disease prognosis of severely ill COVID-19 patients, where GAS6 appears to be part of an early activated mechanism in response to COVID-19. These data support treatment aimed at the reduction of NET formation in severe COVID-19 patients

    Markers of NETosis and DAMPs are altered in critically ill COVID-19 patients

    Get PDF
    Background Coronavirus disease 19 (COVID-19) is known to present with disease severities of varying degree. In its most severe form, infection may lead to respiratory failure and multi-organ dysfunction. Here we study the levels of extracellular histone H3 (H3), neutrophil elastase (NE) and cfDNA in relation to other plasma parameters, including the immune modulators GAS6 and AXL, ICU scoring systems and mortality in patients with severe COVID-19. Methods We measured plasma H3, NE, cfDNA, GAS6 and AXL concentration in plasma of 83 COVID-19-positive and 11 COVID-19-negative patients at admission to the Intensive Care Unit (ICU) at the Uppsala University hospital, a tertiary hospital in Sweden and a total of 333 samples obtained from these patients during the ICU-stay. We determined their correlation with disease severity, organ failure, mortality and other blood parameters. Results H3, NE, cfDNA, GAS6 and AXL were increased in plasma of COVID-19 patients compared to controls. cfDNA and GAS6 decreased in time in in patients surviving to 30 days post ICU admission. Plasma H3 was a common feature of COVID-19 patients, detected in 40% of the patients at ICU admission. Although these measures were not predictive of the final outcome of the disease, they correlated well with parameters of tissue damage (H3 and cfDNA) and neutrophil counts (NE). A subset of samples displayed H3 processing, possibly due to proteolysis. Conclusions Elevated H3 and cfDNA levels in COVID-19 patients illustrate the severity of the cellular damage observed in critically ill COVID-19 patients. The increase in NE indicates the important role of neutrophil response and the process of NETosis in the disease. GAS6 appears as part of an early activated mechanism of response in Covid-19.The study was supported through grants from the dedSciLifeLab/KAW national COVID-19 research program project grant (MH), by Scilifelab, the Knut and Alice Wallenberg Foundation and in part by the Swedish Research Council (RF, grant no 2014-02569 and 2014-07606), and the Netherlands Thrombosis Foundation (GN).N

    Inhibitor recurrence after immune tolerance induction: a multicenter retrospective cohort study

    Get PDF
    Immune tolerance induction (ITI) in patients with congenital hemophilia A is successful in up to 70%. Although there is growing understanding of predictors of response to ITI, the probability and predictors of inhibitor recurrence following successful ITI are not well understood

    An intrinsically disordered proteins community for ELIXIR.

    Get PDF
    Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled "An intrinsically disordered protein user community proposal for ELIXIR" held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders

    Adolescent deviation and age

    Full text link
    Traditional theories of delinquency causation generally fail to consider delinquency in the context of norms and age-role transitions peculiar to adolescence. Hence, in this study, an age-based theory of delinquency causation is developed, which assumes the importance of norms and roles specific to adolescence. This theory draws upon the assumption that socialization is recurrent, in contrast to the premises regarding socialization which underlie traditional theories of adolescent deviance. The recurrent model of socialization and that assumed by traditional theorists are discussed, and their implications for the causes of delinquent behavior are examined. Some effort is made to show that the recurrent model of socialization suggests an anomie of age as the basis for delinquent acts. It is suggested that this age-based anomie stems from conditions of normlessness associated with certain role transitions in adolescence and the pacing of these transitions. Further, it is suggested that certain groups are especially prone to an anomic age transition. The role transitions most likely to be subject to such anomic conditions and the adolescent subgroups most prone to experience anomie as a result of the pacing of their age-role transitions are identified .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45260/1/10964_2005_Article_BF01537174.pd

    The role of extracellular histones in COVID-19

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread from China within 2 months to become a global pandemic. Infection can cause a diversity of symptoms ranging from asymptomatic to severe acute respiratory distress syndrome (ARDS) with an increased risk of vascular hyperpermeability, pulmonary inflammation, extensive lung damage and thrombosis. One of the host defense systems in coronavirus disease 2019 (COVID-19) is the formation of neutrophil extracellular traps (NETs). Numerous studies have revealed elevated levels of NET components, such as cell-free DNA (cfDNA), extracellular histones, neutrophil elastase (NE) and myeloperoxidase (MPO), in plasma, serum and tracheal aspirates of severe COVID-19 patients. Extracellular histones, a major component of NETs, are clinically very relevant since they represent promising biomarkers and drug targets given that several studies have identified histones as key mediators in the onset and progression of various diseases, including COVID-19. However, the role of extracellular histones in COVID-19 per se remains relatively under-explored. Histones are nuclear proteins that can be released into the extracellular space via apoptosis, necrosis or NET formation and are then regarded as cytotoxic damage-associated molecular patterns (DAMPs) that have the potential to damage tissues and impair organ function. This review will highlight the mechanisms of extracellular histone-mediated cytotoxicity and focus on the role that histones play in COVID-19. Thereby this paper facilitates a bench-to-bedside view of extracellular histone-mediated cytotoxicity, its role in COVID-19, and histones as potential drug targets and biomarkers for future theranostics in the clinical treatment of COVID-19 patients. This article is protected by copyright. All rights reserved
    • …
    corecore