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Brief Report

THROMBOSIS AND HEMOSTASIS
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KEY PO INT S

l N-glycan insertion
within an extended
epitope in the spacer
domain prevents
binding of pathogenic
autoantibodies in iTTP.

l Autoantibody-
resistant NGLY3-
ADAMTS13 (K608N)
retains full proteolytic
activity against von
Willebrand factor.

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder
caused by the development of autoantibodies targeting different domains of ADAMTS13.
Profiling studies have shown that residues R568, F592, R660, Y661, and Y665 within exosite-3
of the spacer domain provide an immunodominant region of ADAMTS13 for pathogenic
autoantibodies that develop in patients with iTTP. Modification of these 5 core residues with
the goal of reducing autoantibody binding revealed a significant tradeoff between autoan-
tibody resistance and proteolytic activity. Here, we employed structural bioinformatics to
identify a larger epitope landscape on the ADAMTS13 spacer domain. Models of spacer-
antibody complexes predicted that residues R568, L591, F592, K608,M609, R636, L637, R639,
R660, Y661, Y665, and L668 contribute to an expanded epitope within the spacer domain.
Based on bioinformatics-guided predictions, we designed a panel of N-glycan insertions in this
expanded epitope to reduce the binding of spacer domain autoantibodies. One N-glycan
variant (NGLY3-ADAMTS13, containing a K608N substitution) showed strongly reduced re-

activity with TTP patient sera (28%) as compared with WT-ADAMTS13 (100%). Insertion of an N-glycan at amino acid
position 608 did not interferewith processing of vonWillebrand factor, positioning the resultingNGLY3-ADAMTS13 variant
as a potential novel therapeutic option for treatment of iTTP. (Blood. 2021;137(19):2694-2698)

Introduction
Immune-mediated thrombotic thrombocytopenic purpura (iTTP)
is a rare life-threatening autoimmune disease.1-3 In iTTP, the von
Willebrand factor (VWF) cleaving protease ADAMTS13 is tar-
geted by autoantibodies,4 which leads to loss of its proteolytic
activity5 and/or enhanced clearance6 of ADAMTS13. A major
epitope (R568/F592/R660/Y661/Y665)4,7-9 for autoantibodies is
located in the spacer domain exosite-3, which also provides
an interaction hub for VWF.9,10 Early studies revealed that modifi-
cation of exosite-3 resulted in impaired binding of autoantibodies.4,7

Conservative amino acid substitutions within exosite-3 yielded a so-
called gain of function (GoF; R568K/F592Y/R660K/Y661F/Y665F)
ADAMTS13 variant that conferred resistance to autoantibodies.8 In
contrast to these findings, quantitative assessment of autoantibody
binding using an extensive panel of conservative, semiconservative,
and nonconservative exosite-3 variants indicated that conservative

substitutions that included the GoF variant did not alleviate the
binding of pathogenic autoantibodies.10 Semiconservative and
nonconservative substitutions did result in a significant loss of au-
toantibody binding but also reduced proteolytic activity.10 In the
current study, we employed structural bioinformatics to explore a
larger epitope landscape on the ADAMTS13 spacer domain. Newly
generated autoantibody-spacer domain complex models were used
to design novel variants capable of resisting patient autoantibody
binding. We show that artificially inserted N-glycans prohibit binding
of pathogenic autoantibodies while retaining normal levels of pro-
teolytic activity.

Study design
3D structural models of Fv (variable fragments) from patient-
derived monoclonal anti-ADAMTS13 autoantibodies II-1 and
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I-95,11 were built (Figure 1A).12,13 Thepossible complex formations
between ADAMTS13 cysteine-rich/spacer domain crystal structure
(Protein Data Bank ID: 3GHM)14 and Fv models were generated
by protein-protein docking (Figure 1B).15 Each docking pose for
the wild-type (WT) antigen-autoantibody complex was also
exploited to generate GoF ADAMTS13 mutations (R568K/
F592Y/R660K/Y661F/Y665F),8 which were subjected to simulate
and investigate a loss of interactions between patient-derived
monoclonal antibodies and these classic exosite-3 epitope
residues. As shown previously8 and here, II-1 and I-9 can no
longer bind to GoF-ADAMTS13. TheWT andGoF complexeswere
used in molecular dynamics simulations (Figure 1C; supplemental
Video 1, available on the Blood Web site)16 to determine the most
likely binding pose for II-1 and I-9 by means of binding free energy
(BFE) calculation,17-19 and the lowest BFE (highest affinity) for the
WT–antigen–autoantibody complex (compared with the GoF–
antigen–autoantibody complex; Figure 1D). The selected complexes
for I-9 and II-1 were further investigated at a residue level on the
spacer domain, and a larger epitope landscape was predicted by
our models. These predicted residues were mutated to an al-
anine. Alternatively, putative N-glycan attachment sequences
were inserted in the loops where these residues are located
(supplemental Table 1). These variants were produced in Chi-
nese hamster ovary cells and quantified, and the binding of each
variant was measured against II-1, I-9, and a cohort of previously
characterized iTTP patients’ sera as previously described.10 The
activity level of each variant was also measured with a FRETS-
VWF7320 and VWF multimer assay.10 Selected variants were
also measured with a flow assay. The presence of N-glycans was
experimentally determined by mass spectrometry. Further
details of the experimental procedures are available in the
supplemental Material.

Results and discussion
Models of ADAMTS13 spacer and II-1/I-9
autoantibody complexes predict a larger
epitope landscape
The antigen-autoantibody complex models predicted an ex-
pansion of the previously determined epitope area in autoantibody
binding. The model of the spacer–I-9 complex predicted that
residues R568, L591, F592, K608, M609, R636, L637, R660,
Y661, Y665, and L668 together form a larger epitope. Themodel
of spacer–II-I complex predicted involvement of the same res-
idues as well as R639 (Figure 2A; supplemental Table 1). Un-
expectedly, all of the novel single-alanine variants (Figure 2A,
yellow) were still capable of binding to patient-derived mono-
clonal antibodies II-1 and I-9 (Figure 2B), whereas the single-
alanine variants of classic epitope residues (Figure 2A, magenta)
displayed a varying but much stronger reduction in binding. This
may reflect a lower contribution of L591, K608, M609, R636,
L637, and L668 to I-9 and II-1 binding compared with several of
the core classic R568/F592/R660/Y661/Y665 residues, despite
the predicted interactions (supplemental Table 1).

N-glycan variants of ADAMTS13 can resist against
II-1 and I-9
Putative N-glycanmotifs (supplemental Table 1) were inserted as
a complementary approach to cause a steric hindrance on the
spacer epitope for autoantibodies. As shown in Figure 2B, variants
NGLY1,NGLY5, andNGLY6were able to resist against autoantibody
II-1, and only NGLY1 and NGLY4 were partly resistant against I-9.
NGLY2 and NGLY3 did not show any resistance against II-1 and I-9.

Variant NGLY3 can resist against autoantibody
repertoires of TTP patients
All above-mentioned variants of ADAMTS13 were tested against
a cohort of iTTP patients’ sera (n 5 13). As previously shown,10
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Figure 1. Structural bioinformatics pipeline to build
an antigen-autoantibody complex. (A) Antibody mod-
eling of the Fv fragments of the II-1 and I-9 autoanti-
bodies. Heavy chain (VH; shown in red) and light chain
(VL; shown in green) built and orientated with each
other. Complementary determining region 3 of VH
(CDR-H3; shown in multiple colors) was grafted at dif-
ferent conformations to the Fv model. (B) Docking re-
sults of ADAMTS13 antigen-autoantibody complex
following the protein-protein docking step. (C)Molecular
dynamics simulations for each WT- and GoF-complex
models were run. (D) A likely complex between
ADAMTS13 antigen and autoantibody was selected by
BFE calculations. Cys, cysteine.
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Figure 2. Measuring the autoantibody reactivity and proteolytic activity of novel ADAMTS13 variants. (A) ADAMTS13 epitope expansion based on modeling. Known
epitope residues are depicted in magenta; predicted residues are depicted in yellow. Native N-glycan residues are highlighted in green. Artificial N-glycans were introduced at
positions 568 (NGLY1), 591 (NGLY2), 608 (NGLY3), 609 (NGLY4), 636 (NGLY5), and 637 (NGLY6). (B) Reactivity of ADAMTS13 variants against II-1 and I-9 monoclonal auto-
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Materials). OD, optical density.
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single-alanine mutations did not significantly reduce binding
against patient sera (Figure 2C). Only F592A and K608A were able
to cause a mild reduction to ;70% of WT-ADAMTS13 binding. In
contrast, a reducedmedian binding (up to 50% to 55%) of patients’
autoantibodies to NGLY1, NGLY2, NGLY4, and NGLY6 was ob-
served. Binding of patient-derived autoantibodies to NGLY5 was
only mildly affected. Interestingly, variant NGLY3 showed the
lowest median binding against the patient’s sera (28%), suggesting
that insertion of an N-glycan at amino acid position 608 efficiently
shields binding of autoantibodies to the spacer domain in 10 of 13
patients (,50%). In the rest of the patients, 2 out of 3 hadC-terminal
autoantibodies (TTP-079 and TTP-085) (Figure 2C).

Proteolytic activity of ADAMTS13 variants
Subsequently, we addressed whether the ADAMTS13 variants
described above were still capable of cleaving VWF. Among all
single-alanine variants, F592A and R660A were the only variants
that resulted in reduced activity relative to WT-ADAMTS13 in
FRETS-VWF73 (Figure 2D). Other exosite-3 variants (R568A and
Y661A) retained an identical activity to WT-ADAMTS13. Variant
Y665A, together with all other expanded-epitope single-alanine
mutant variants (L591A, K608A,M609A, R636A, L637Aand L668A),
resulted in higher activity than WT-ADAMTS13 in FRETS-VWF73.
The activity of single-alanine ADAMTS13 variants tested against
recombinant VWFmultimers in a static assay is in concordance with
results obtained using FRETS-VWF73 (supplemental Figure 1).

With FRETS-VWF73, variants NGLY1-5 displayed similar or higher
activity when compared withWT-ADAMTS13. Variant NGLY6 was
significantly less active than WT-ADAMTS13 (Figure 2D). NGLY3
andNGLY4were similarly active asWT-ADAMTS13 (Figure 2D-E).
The ability of NGLY1, NGLY2, NGLY5, and NGLY6 to process
VWF multimers was reduced, likely because of increased urea
sensitivity (Figure 2E; supplemental Figure 2). In addition,
NGLY3 and WT-ADAMTS13 had similar levels of proteolytic
activity against VWF multimers under flow conditions (supple-
mental Figure 6). NGLY3 was subsequently tested for activity
together with an excess of patient autoantibodies in a FRETS-
VWF73 assay.10 Seven out of 11 patients (63%) inhibited the
NGLY3-ADAMTS13 variant less when compared with the WT-
ADAMTS13 (Figure 2F; supplemental Figure 4). The remaining
4 patients inhibited both the WT- and NGLY3-ADAMTS13 to a
similar extent. The presence of an additional N-glycan on NGLY3-
ADAMTS13 was confirmed inmass spectrometry by the detection
of K608N deamidation upon deglycosylation (Figure 2G; sup-
plemental Figure 5). We conclude that the significant reduction
in reactivity with NGLY3-ADAMTS13 (K608N) against TTP
patient sera is caused by the steric hindrance created by the
N-glycan. Based on these properties, we suggest that the NGLY3-
ADAMTS13 variant may potentially be used to rapidly restore the
VWF-ADAMTS13 axis in patients suffering from acute iTTP.
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