119 research outputs found

    On a class of invariant coframe operators with application to gravity

    Get PDF
    Let a differential 4D-manifold with a smooth coframe field be given. Consider the operators on it that are linear in the second order derivatives or quadratic in the first order derivatives of the coframe, both with coefficients that depend on the coframe variables. The paper exhibits the class of operators that are invariant under a general change of coordinates, and, also, invariant under the global SO(1,3)-transformation of the coframe. A general class of field equations is constructed. We display two subclasses in it. The subclass of field equations that are derivable from action principles by free variations and the subclass of field equations for which spherical-symmetric solutions, Minkowskian at infinity exist. Then, for the spherical-symmetric solutions, the resulting metric is computed. Invoking the Geodesic Postulate, we find all the equations that are experimentally (by the 3 classical tests) indistinguishable from Einstein field equations. This family includes, of course, also Einstein equations. Moreover, it is shown, explicitly, how to exhibit it. The basic tool employed in the paper is an invariant formulation reminiscent of Cartan's structural equations. The article sheds light on the possibilities and limitations of the coframe gravity. It may also serve as a general procedure to derive covariant field equations

    Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section

    Full text link
    This paper focuses on the study of existence and uniqueness of distributional and classical solutions to the Cauchy Boltzmann problem for the soft potential case assuming Sn1S^{n-1} integrability of the angular part of the collision kernel (Grad cut-off assumption). For this purpose we revisit the Kaniel--Shinbrot iteration technique to present an elementary proof of existence and uniqueness results that includes large data near a local Maxwellian regime with possibly infinite initial mass. We study the propagation of regularity using a recent estimate for the positive collision operator given in [3], by E. Carneiro and the authors, that permits to study such propagation without additional conditions on the collision kernel. Finally, an LpL^{p}-stability result (with 1p1\leq p\leq\infty) is presented assuming the aforementioned condition.Comment: 19 page

    Global existence and full regularity of the Boltzmann equation without angular cutoff

    Get PDF
    We prove the global existence and uniqueness of classical solutions around an equilibrium to the Boltzmann equation without angular cutoff in some Sobolev spaces. In addition, the solutions thus obtained are shown to be non-negative and CC^\infty in all variables for any positive time. In this paper, we study the Maxwellian molecule type collision operator with mild singularity. One of the key observations is the introduction of a new important norm related to the singular behavior of the cross section in the collision operator. This norm captures the essential properties of the singularity and yields precisely the dissipation of the linearized collision operator through the celebrated H-theorem

    A Kinetic Approach to Hyperbolic Systems And the Role of Higher Order Entropies

    No full text
    Abstract. The reformulation of conservation laws in terms of kinetic equa-tions, which parallels the relation between Boltzmann and Euler equation, has been successfully used in the form of kinetic schemes. The central problem in the kinetic approach is the construction of suitable equilibrium distribu-tions which generalize the Maxwellian in the Boltzmann{Euler case. Here, we present a solution to this problem which allows the construction of equilib-rium distributions for general systems of hyperbolic conservation laws. The approach leads to the notion of higher order entropies and generalizes several approaches discussed by other authors. 1
    corecore