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GLOBAL EXISTENCE AND FULL REGULARITY
OF THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

AsstrAacT. We prove the global existence and uniqueness of classical solutions around an
equilibrium to the Boltzmann equation without angular ¢tilo some Sobolev spaces. In
addition, the solutions thus obtained are shown to be non-negativeamuall variables

for any positive time. In this paper, we study the Maxwellian molecule type collision
operator with mild singularity. One of the key observations is the introduction of a new
important norm related to the singular behavior of the cross section in the collision opera-
tor. This norm captures the essential properties of the singularity and yields precisely the
dissipation of the linearized collision operator through the celebrated H-theorem.
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1. INTRODUCTION
We consider the Cauchy problem for the inhomogeneous Boltzmann equation
(1.1) fi+v-Vyf =Q(f, f), flo= fo,

wheref = f(t, x, V) is the density distribution function of particles, having positioa R3
and velocityv € R3 at timet. Here, the right hand side of (1.1) is given by the Boltzmann
bilinear collision operator, which is given in the classigalrepresentation by

Q(g,f)=ffB(v—v*,a){g;f'—g*f}dodv*,
R3 SZ

wheref! = f(t,x,v.), f' = f(t,x, V), f, = f(t,x,v.), f = f(t,x,v), and foro € S?,
V+V, V=V, V+V, V=V,

2 "2 2 2 ©
which gives the relation between the post and pre collisional velocities. Recall that we have
conservation of momentum and kinetic energy, thavis,v, = V' + V. and|v|*> + |v,|? =
IV'|? + |V.|. The kerneB is the cross-section which can be computed ffedént physical
settings.

In particular, the non-negative cross secti®(@, o-) depends only offgl and the scalar
product(é, o). In most cases, the kernBlcannot be expressed explicitly, but to capture
its main properties, one may assume that it takes the form
V-V, by
|V_ V*| ’ E
An important example is the inverse power law potentidl with r > 1, p being the
distance between two particles, in which the cross section has a kinetic factor given by

\/Z 0',\/;:

B(lv — V.|, cos8) = O(Jv — v.|)b(cossd), cosh = < 0'>, 0<6<

4
O(v-v)xv-wl,  y=1--,

and a factor related to the collision angle containing a singularity,
b(cosh) ~ K& 225 when § — 0+,

for some constant€ > 0 and O< s= % <1

The cases with k r < 4,r = 4 andr > 4 correspond to so-called soft, Maxwellian
molecule and hard potentials respectively. In the following discussion, this type of cross
sections, with the parameteysaands given above, will be kept in mind.

As a fundamental equation in kinetic theory and a key stone in statistical physics, the
Boltzmann equation has attracted, and is still attracting, a lot of research investigations
since its derivation in 1872.

A large number of mathematical works have been performed under the Grad® cuto
assumption, avoiding the non-integrable angular singularity of the cross-sections, see for
example [22, 23, 34, 39, 40, 46, 55, 48, 49, 70] to cite only a few, further references being
given in the review [73].

However, except for the hard sphere model, for most of the other molecule interaction
potentials such as the inverse power laws recalled above, the cross &fgtion., o) is
a non-integral function in angular variable and the collision opei@dr f) is a nonlinear
singular integral operator in velocity variable.

By no means to be complete, let us now review some previous works related to the
Boltzmann equation in the context of such singular (or nonffutwoss-sections. For
other references and comments, readers are referred to [5, 73].
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The mathematical study for the Boltzmann equation, without assuming Grad® cuto
assumption, can be traced back at least to the work by Pao in 1970s [64] which is about
the spectrum of the linearized operator. In 1980s, the existence of weak solutions to the
spatially homogeneous case was proved by Arkeryd in [17] for the mild singular case, that
is, when 0< s < % and by using an abstract Cauchy-Kovalevskaya theorem, Ukai in
[69] proved the local existence of solutions to the inhomogeneous equation, in the space of
functions which are analytic ir and Gevrey inv.

For a long time, the mathematical study of singular cross-sections was limited to these
results and a few others, most of them related to the spatially homogeneous case concerning
only the existence. An important step was initiated by the works of Desvillettes and his
collaborators in 1990s, showing partial regularization results for some simplified kinetic
models, cf. [26, 27, 28, 29, 33, 31, 72].

After the well known result of DiPerna and Lions [34] for the diittase, Lions was able
to show the gain of regularity of solutions in the Landau case [50], which is a model arising
as a grazing limit of the Boltzmann equation. It was then expected that this kind of singular
cross sections should lead to smoothirffpet on solutions, that is, the solutions have
higher regularity than the initial data. For example, it should be similar to the case when
one replaces the collision operator in the Boltzmann equation by a fractional Laplacian in
velocity variable, that is, a fractional Kolmogorov-type equation [61].

Certainly, the results of Lions [51] and Desvillettes have influenced the research in
this direction. It is therefore not surprising that a systematic approach, using the entropy
dissipation angr the smoothing property of the gain part of the collision operator, was
initiated and has been developed to an almost optimal stage througffdars ef many
researchers, such as Alexandre, Bouchut, Desvillettes, Golse, Lions, Villani and Wennberg.
The underlying tools have proven to be very useful for the study on the mathematical
theory regarding the regularizingfect for the spatially homogeneous problems for which
the theory can now be considered as quite satisfactory, cf. [6, 7, 16, 24, 29, 30, 32, 47, 59,
60, 71], and the references therein, see also for a much more detailed discussion [5].

Compared to the spatially homogeneous problems, the original spatially inhomoge-
neous Boltzmann equation is of course physically more interesting and mathematically
more challenging. For existence of weak solutions, we mention two results regarding
the Cauchy problem. One is about the local existence between two moving Maxwellians
proved in [3] by constructing the upper and lower solutions, another is the global existence
of renormalized solutions with defect measures shown in [16] where the solutions become
weak solutions if the defect measures vanish. On the other hand, the local existence of
classical solutions was proved in [12] in some weighted Sobolev spaces.

However, in view of the above available results, the mathematical theory for nofi-cuto
cross-sections is so far not satisfactory. This is in sharp contrast to tifeeage, for which
the theories have been well developed, see [19, 20, 21, 34, 36, 46, 52, 53, 67, 68, 70] and
the references therein.

For the study of the regularizingfect, one of the main diculties comes from the
coupling of the transport operator with the collision operator, which is similar to the Landau
equation studied in [25]. To overcome thisfiulty, a generalized uncertainty princigie
la Fefferman [38] (see also [56, 57, 58]) was introduced in [8, 9] for the study of smoothing
effects of the linearized and spatially inhomogeneous Boltzmann equation with ndh-cuto
Cross sections.

In order to complete the full regularization process, recently, in [12], by using suitable
pseudo-dierential operators and harmonic analysis, we have developed sharp coercivity
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and upper bounds of the collision operators in Sobolev space, together with the estimation
on the commutators with these pseudffedential operators. More precisely, in [10, 11,

12], for classical solutions, we established the hypo-ellipticity of the Boltzmann operator,
using the generalized version of the uncertainty principle.

The present work is a continuation of our collaborative program since 2006 [9, 10, 11,
12]. Comparing to the cufbcase, we aim to settle a mathematical framework similar to
the studies first proved by Ukai, see [67, 68], and fitted into an energy method by Liu and
collaborators [52, 53] and Guo [46] which has led to a clean theory for the Cauchy problem
in the cutdf case, for solutions close to a global equilibrium.

In this paper, we will establish the global existence of non-negative solutions in some
Sobolev space for the Boltzmann equation near a global equilibrium and prove the full
regularity in all variables for any positive time.

As mentioned in the abstract, one of the main ingredients in the proof is the introduction
of a new non-isotropic norm which captures the main feature of the singularity in the
cross-section. This new norm is in fact the counterpart of the coercive norm which was
introduced by Guo [45] as an essential step for Landau equation.

Itis not known if there is any equivalence of this norm to some Sobolev norm, in contrast
to the case of the Landau equation. However, since it is designed to be equivalent to, and to
have much simpler expression than, the Dirichlet form of the linearized collision operator,
this norm not only works extremely well for the description of the dissipatfieceof the
linearized collision operator through the H-theorem, but also well fits for the upper bound
estimation on the nonlinear collision operator. Here, we would like to mention the work
by Mouhot and Strain [62, 63] about the gain of moment in a linearized context due to the
singularity in the cross-section. Such a gain of moment which is well described by the new
non-isotropic norm is in fact crucial for the proof of global existence.

We now come back to the problem considered in this paper. To make the presentation
as simple as possible, and to concentrate on the singularity of the grataéng we shall
study the Maxwellian molecule type cross-sections with mild singularity, that is, the case

when
V-V,

B(lv — V.|, cost) = b(cos), cosh = ( , cr>, 0<6< g

|_*|

and
(1.2) b(cosh) ~ K& 272, 6 — 0,

with0 < s< % The general case will be left to our future work.
In order to prove the global existence, we need to use the complete dissifdidise e
of the collision operator. Similar to angular ctit@ase, such dissipativefect can be
fully represented by the dissipation of the linearized collision operator on the microscopic
component of the solution through the H-theorem.
Thus, as usual, we consider the Boltzmann equation around a normalized Maxwellian
distribution
3 _m?
uv) = (2n)2e 2.
Sincey is the global equilibrium state satisfyir@(u, 1) = 0, by settingf = u + g, we
have

Qlu + Vug, p+ Vug) = Qu, Vug) +Q(vVug, 1) + Q(Vrg, Vua).

Denote

(g, h) = u 2Q(Vr g, Vih).
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Then the linearized Boltzmann operator takes the form

.Lg = ng+~£29 = _r(\//_'l’ g) _r(g’ \/IL_'[)
And the original problem (1.1) is now reduced to the Cauchy problem for the perturbation
g

(1.3) O +V-Vig+Lg=T1(g, g), t>0;
' Oli=o = Jo-
This problem will be considered in the following weighted Sobolev spacesk,Foe
R, set
HE®S,) = {f e S'®F): WE e HY(RY) |

whereRS,, = R x R3 andW/(v) = (v) = (1 + M?)“? is the weight with respect to the
velocity variablev € R3.
The main theorem can be stated as follows.

Theorem 1.1. Assume that the cross-section satisfies (1.2) Gith s < 1/2. Let g €
HY(R®) for some k> 3,¢ > 3 and

fo(x, V) = u+ Vi do(x,V) > 0.
Then there existsy > 0, such that ifligollxrs) < €0, the Cauchy problem (1.3) admits a
unique global solution
g€ L ([0, +oo[; Hf(R®).
Moreover, ft,x,v) = u+ i 9(t, x,v) > Oand
g € C*(]0, +oo xR).

Actually, for the uniqueness, we can prove the following stronger result, which might
be of independent interest. Note that here we do not need to assumk ithatsmall
perturbation ofu.

Theorem 1.2. Under the same condition on the cross-sectionQferT < +ocoand | > 2s+
7/2,let fy > 0, fo € L*(R3; HZ,(RY)). Suppose thatif f, € L¥(]0, T[XRS; HZ,(R3)) are
two solutions to the Cauchy problem (1.1). If one solution is non-negative, thenf§.

Throughout this paper, we assume that the cross-section satisfies the condition (1.6)
with 0 < s < 1/2 except otherwise stated.

The rest of the paper will be organized as follows. In the next section, we will in-
troduce a new non-isotropic norm and prove some essential coercivity and upper bound
estimates on the collision operators with respect to this new norm. In order to study the
gain of regularity of the solution, we need to apply some pseufferdntial operators on
the Boltzmann equation. For this purpose, in Section 3, we study the commutators of the
collision operators with the pseudofidirential operators. In Section 4, we will apply the
energy method for the Boltzmann equation and obtain the local existence theorem. In Sec-
tion 5, we will study the uniqueness and the non-negativity of the solutions. This new
method for proving non-negativity can be applied to the case with anguldf.cbtm more
detail discussion on the non-negativity problem, refer to [15]. In Section 6, the full reg-
ularity is proved along the approach of [12]. Finally, the global existence of the solution
will be given in the last section. For this, the macro-micro decomposition introduced by
Guo [45] will be used for the estimation on the macroscopic component.
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Note: After finishing this paper, we were informed by R. Strain of his recent paper in
collaboration with P. Gressmann [41], showing also the existence of global solutions to
the Cauchy problem by usingftirent approach. Notice that their solution is iffelient
function space which does not lead to full regularity because of the weak regularity in the
velocity variable.

Note added in September, 2010Several new results have been announced along the
same line of development since the submission of the current paper. For the reader’s refer-
ences we mention [42, 43, 44, 13, 14, 15]. The maifedence of the results is the range
of admissible values of: y > —1 — 2sin the first 3 papers ang> max(3,-3/2 - 2s) in
the latter 4 paper.

2. NON-ISOTROPIC NORMS

In this section, we study the bilinear collision operator given by

Q(g,f)=L3fszb(cow){g;f’—g*f}dadv*,

through harmonic analysis. Since the collision operator acts only with respect to the ve-
locity variablev € R3, (t, X) is regarded as a parameter in this section.

2.1. Coercivity and upper bound estimates.Letg > 0, g #0, g € L% N LlogL(R3). It
was shown in [6] that there exists a constejit 0 depending only on the values |¢g1|L;

and[|gllLiogL Such that for any smooth functidne HS(R?,), we have

2.1.1) Coll Ffeesy < (—Q@. 1), Py + Clldlluagesll FIiF2zs)-

Besides this, we still need some functional estimates on the Boltzmann collision op-
erators. The first one, given below, is about the boundedness of the collision operator in
weighted Sobolev spaces, see [1, 2, 4, 5, 12, 47] .

Theorem 2.1. Assume that the cross-section satisfies (1.2) &iths < 1. Then for any
m e R and anya € R, there exists G 0 such that

(2.1.2) QT Dlikpesy < ClIFlle, | @llGllm-zs  e3)
forall f e L}, ,(R)) and ge H'2 . (RY) -

We now turn to the linearized operator. First of all, by using the conservation of energy
VL2 + VP = NP+ v,
we haveu(v.) = u*(v) u(v,) u(v). Thus,

I(f. @) = 172 [[ becost)( Vi £ Vg ~ vit. yi g )dv.dor
(2.1.3) = [[ b(cost) yi. (.9’ - f.g)dv.do-
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It is well-known that£ (acting with respect to the velocity variable) is an unbounded
symmetric operator ob?(R3). Moreover, its Dirichlet form satisfies

(£9. 9) e, = (M. O +T(@. VD). 9) 40
= [[] breosa(eay2g - 4)2q" + 0.6 - 61 2) ) gdudordy
= [[] broosn(tyi g - () 2g + 62 - 0.6 2)ut) 2 v drdy
@14) = [[[ btcoss)((2g. - ()%g. + g2 - 9)7) ()" g.v.drdy
= [[[ oteosn(t) g - 029, + o )2 - )2y v drdy
1 ’ / ’ / 2
=3 [ breos ()20 - 629 + (6%, - ()*%q.))” oy
The third line in the above equation is obtained by using the change of varigblgs-6
(V',Vv.). The fourth line follows from the change of variablesy.) — (v.,V) and then the
fifth line follows from the fourth one by using the change of variables.) — (V',V.).
And the second last line is just the summation of the previous four lines. Note that the
Jacobians of the above coordinate transformations are equal to 1.

Moreover, it follows from the above formula tk(a&;g, g) =0ifandonlyifPg=g
where

L2(R)

Pg = (a+ b-v+ c|v|2) Vi,
with a,c € R, b € R3. Here,P is theL?-orthogonal projection onto the null space

N:Spar{\/ﬁ,le/ﬁ,vw/ﬁ,vax/ﬁ, IVIZ\/ﬁ}~

The following result on the gain of moment of ordeim the linearized framework is
essential in the sequent analysis.

Theorem 2.2. (Theorem 1.1 ¢fi63])
Assume that the cross-section satisfies (1.2) Qviths < 1. Then there exists a constant
C > Osuch that

(£9. 9) 1z = CIIT =Pl sy -

For the bilinear operator(-, -), we need the following two formulas. For suitable
functionsf, g, the first formula coming from (2.1.3) is

(2.1.5) I(f, 9(v) = Q( f. g)+f b(cos)( Vi — Vit )f/g'dv.dor.
On the other hand, applying the change of variablgg.) — (v, V,) in (2.1.3) gives

(11 9 W)y = [[ [ Dlcost v (179 - 1.9
= ff b(cosd) v (f.g - f/g)h .

By adding these two lines, the second formula is

(2.1.6) (T(f. 9). hLZ(R3) f f b(cosd)(f/g’ — f.g)( vz h— Vi ).

L2(RY)
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The following lemma shows thaf; controls L.

Lemma 2.3. Under the condition (1.2) on the cross-section vtk s < 1, we have

1
2.1.7) (£19. 9)2es) = 5(£9: 9) s -

Proof. From (2.1.3) and similar changes of variables, we have

(£19. 9) s = ~(T(VE-9). 9) )

- % f f b(coss)(()2g ~ (1.)"/%) dv.dordy

- % f f b(coss)((«) /2, - (u)*/?g.) dv,dedv

-3 fff bicost) {((u0)2g’ - (4)2g) + ()70, - (%)} dv.derd.

Therefore, (2.1.7) follows fromA + B)? < 2(A? + B?) and (2.1.4). o

2.2. Definition and properties of the non-isotropic norm. The non-isotropic norm as-
sociated with the cross-sectibfcosd) is defined by

(2.2.1) ligll? = f f b(cosO). (g —g)* + f f bcosh)g?(Vi' — Vi ).

where the integration is ov@®3 x R? x SZ. Thus, it is a norm with respect to the velocity
variablev € R® only. As we will see later, the reason that this norm is called non-isotropic
is because it combines both derivative and weight of osdiere to the singularity of cross-
sectionb(cosb).

The following lemma gives an upper bound of this non-isotropic norm by some weighted
Sobolev norm.

Lemma 2.4. Assume that the cross-section satisfies (1.2) Qviths < 1. Then there exists
C > Osuch that

2.2.2) lgll? < Cligii?s
for any ge HE(RY).

Proof. Applying (2.1.2) witha = —sandm = —sgives
(223) (% 9.9)
On the other hand,

(@2 9. 6] - f f f b(cost)(f2 g’ - 12g)g

_ f f b(cosd) fZ (¢ - g)g+ f g f f b(coss)(fZ - 12).

For the first term in the last equation, usio@ — b) = 3(a? — b?) — 3(a— b)? yields
2 _ 1 2 (~2 2
(% 9).9) 0 = 5 ||| BleosH? (¢ - &)

_%ff b(cose)ff/(g’—g)2+f92 ffb(cosa)(ff’ - ff).

2 2 2
< Cllf %l lIglkgligling < CHFIITIGG;-

L2(RS)
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By the change of variables/( V') — (V., V), the first term above is alsp [[[ be?(f2 - £2).
Thus, it follows that

(U2 9. 0) s = - ff bf2(g — g + = fg ff b( 2 -
dth
o ff bf?(g - 9)* < 2|(Qf?, 9), g)l+|fffbgz(f3’_

By using (2.2.3) and the cancellation lemma from [6], we get

(2.2.4) f f bf2(g’ - 9)* < CIIfI%llgilf; + ClIGIZIIIIZ, < CIIIIZ gl
Thus, choosing = +/u gives

lglli? < CAIVEIIE gl + IgliE: Il VA IiFe) < Clialle
This completes the proof of the lemma. O

In the context of usual weighted Sobolev spaces, this last result is likely to be optimal.
Next we will show that this non-isotropic norm is controlled by the linearized operator.
First of all, we shall need the following preliminary computation.

Lemma 2.5. For any¢ € Ct, we have
[ Breosaiat) - v ider < Colv— v < Campw.
where G depends offiglic: = lIgll~ + 1| V SllL=.
Proof. It follows from Taylor’s formula that
0
(#(v) = 9] < Calvi — V| < Cysin( 5 )V = Vi,
and|g(v.) — ¢(v,)| < C,. Then for anys € (0, 7/2),

/2
[ breosao) - ¢<V)|dcr<c¢{|v— vl f s [ szsda}

< Cyfiv-vilo 4 572,

If v—v,|™t < Z, by choosing = |v— V.1, we get

<1,
f b(cosh)|¢(v.) — p(V)ldo < Cylv — V.| < CWY?S(v, )2,

If v—v.,| < 2, we have

f b(coss)I¢(V.) — ¢(V,)Ido < Cylv — V.| < Cé < GV

And this completes the proof of the lemma. O

Up to the kernel of£, the following lemma gives the equivalence between the non-
isotropic norm and the Dirichlet form of.

Lemma 2.6. For g € N+, we have
(2.2.5) (£a. g)Lz(Rg) ~ lliglli®.

Here A~ B means that there exists two generic constani€g> 0 such that GA< B <
CoA.
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Proof. We first deal with the lower bound estimate starting with the terms linkegd,to
Since

~(£29. 9) 4 p) = (T@ VE). ) ey
we get from (2.1.5) that
(2:26) ~(£28.9) ., = (TG V2. ), + [[[ DlcosO)(vE = V)l Vi g

Using (2.1.2) withe = 0,m = 0, the first term on the right hand side of (2.2.6) can be
estimated by

(Vg VA). 9]y | < 1A VG, VRISl

< Cll Vgl Il VAllzligil2 < Cligl?..

For the second term on the right hand side of (2.2.6), we have
ff b(cost)( Vi- — Vi ) g, Vi’ g dvdvdo

= ff b(cos@)(\/,T* - \/ﬂ_;)g;(#,)m ((ﬂ,)lm_ (#)1/4)9
+ fffb(cos@)(\/y_* - \/#_;)g;(},f)m (0)4g.

Thus,
[ ercosa v - i) g g
[t Yt

([ oo - wrucr)
+(fff b(cost) | viz: = Vi, Iglz(ﬂ’)1/4(;1)1/4)1/2

x(fffb(cose)wm—\/?;

12 12 412 1/2
5'1 ><I2 +I3 ><I4.

|g;|2w’)lf4w)1/4)1/2

Using Lemma 2.5 withy = u** gives

f b(cos@)‘(y;)l/“ —w)Ydo < Cv-v.[F < C <v>B<y, >% .
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Since(u,) " (WYM? = ()Y )M = ()Y M)A, we get

110 C [ bleosnia)? - )V as) 2avaucr

< ¢ [[] otcosmfu - gy | (6ay + i) )ae)

<[] broosowyi - Gy fag?

+C [[] breosnfiun) - Gy oy gt

< ¢ [ (0uay 402 + ()24 oP)avel

< ClglFz g5, + 1012 (es)-
Forl,, by using the change of variables¥.) — (v.,v) and then¥,Vv.) — (v, V.), one has

[ reos (@y - o) g
= [[] oreosa 6y - ) 1glu)

< © [ (e 408 v < CIE,
For 4, using the change of variableg ¢.) — (V/,V.) implies that

[ etcosn |V = Vi | 1Py

= [[[ bteosn)| v - i
< © [ (w50 vy < CIE,
In summary, we obtain

(2.2.7) I(£29.9)! < ClglIF,.
For the term involvingly, using (2.1.6) yields

(£19. 9) s = ~(N(VE- 9. 9) )

=5 [[[ oo (6 - 2o

=5 [ beose) (@yg - 0+ 062 - )Y

> 3 [[[ costnitg - 92~ 5 [[[ broosng?(wy? - ey’

where we used the inequalitgt ¢ b)*> > 3a2 — b Then

(£16 ) 25 2 %( f f b(coso)(g' ~ 9)* + f f b(COS@)gZ((,u;)l/Z_(H*)l/Z)Z)
3 , 2
-3 [ breosergi (= - gu¥2)"

192 )4 )M
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We now apply (2.2.4) and the change of variables,) — (v.,V) to get

2
f f f b(cost)g*((ul)"? - (1.)"?)” < ClIgIZ, ™ I3 < Cligll?,
Therefore,

(£10. )Lz_—mgm2 CligiiZ,-

Thus, we have from (2.2.7)

(£9. 9) ., = (£19.9), + (£20.9),
> Zllgll? - Clai?;

By Theorem 2.2, we have from the assumpiipa N+ that

ligh® < 4(£g. g),, + Cligii?, < €(£g, 9)

L2’

which gives the lower bound estimation.
For the upper bound estimate, we have

(£:9. )y = 5 [ [[ Bloos (620 - G120
=5 [[[ beose) (wyg - 9+ 0622 - )
< f f bcoso). (g - 0 + f f b(cosa)g?(()2 - (u)V?)’
<Iligli?.
By (2.1.7), we have
(£9. 9), 5 < 2P

The proof of Lemma 2.6 is then completed. O

The next result shows that the non-isotropic norm controls the Sobolev norm of both
derivative and weight of ordes:

Lemma 2.7. There exists G 0 such that

(2.2.8) lgi? = Cllglifys + lgliZ,)-

Proof. Write

ligll? = fR 6 f _b(costu( (9) - gv)) dorclv.dv

i

b(coss)g?(u/?(v) - ,ul/z(\/)) dodv,dv= A+ B.

=)
)
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According to the calculation of Propositions 1 and 2 in [6], we have
=@ [ [ (& - oaoser + o
— 2Refi(¢")(£M)8(€) jdords

—2(271)3]‘ |g(§)|2{f <|§| )(,U(O) |,U(§)|)d0'}dé’

o f EPaEPdE > 2% [ (L+ 160 Pdé
[é1>1 [é>1

> C12_25||g||Hs(R3) C1||g||L2(R3)

where we have used Lemma 3 in [6] that

(2.2.9) f (|§I o)@0) - [ ))do > Cle®,  Vid > L.
Similarly,
B=(2n) f f b(é o |GRON2(E)P + GO)ut ()2
~ 2ReQ2(¢ u2(e") ub2(€) Jdordé
_ é: D12 et G
k2 [, [.o cl o) PO ~ ) o
+ fR [ b - )G - Rege) (e e ke

—B;|_+Bz

For B4, one has

B = [ [ M - PO - (o) ok
= CllgiZ, f 2s) [ (€ - o)) - e

> CollglZ: s,

where

C=Cy f A(@s) [ Bl - o)he) - 1ffdore >
For the second term on the right hand side, by using

H2(€) 42(E7) = C2%),
for some positive constaf, we have

fRf Zh 0)(GR(0) ~ RegR(e) )il 2(&) i (¢ dord
¢ fR fs i OG0 - Regi(e))dorce.

_ E [

_CfRs Lz b(|§| 7) Rgg (V)(1-cos¢™ - v))dvii(2¢)dordé.
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We now use Bobylev’s technique [18] to have

& \
f (% - opute v - fS by - o)ule Vo

so that

B,>C f *W) ( f fS 2 b(% . o’)(1 - cos¢ - v‘))ﬁ(2§)dod§)dv
~c [ g [[ bl - oo - g av

>C| g (v)|v|25dv> C27 21 ) — CllDIE e

v>1

where we have used (2.2.9) and the change of variabledinexchanging/|£] andv/|v|.
Finally, by choosing a suitably small constarkQl < 1,

ligl> = A+ By + By > 1A+ By + 1B,
> C(IGIZqe3) + 19112z

and this concludes the proof of the lemma. O

2.3. Upper bound estimates. To apply the energy method, we need some upper bound
estimate on the collision operator in terms of the non-isotropic norm which will be given
in the following proposition. For this, we first prove

Lemma 2.8. There exists G 0 such that

(23.1) f f f b(cosd) F2(g’ — g)* < CIIFIIZ, lgll®.

Proof. Different from Lemma 2.4, we apply Bobylev formula [18] to have

f f b(cos)u.(g — g)>dv.dodv

(zﬂ)g = [[b (Ifl )#(0)(|9(§)|2+|g(§ ) - 2Re (e )ole)B(E) ) dedor

— o ) ol )0 - 86"y + 2Re(0) - ) )ote )l

fff b(cost) fX(g’' - g)*dv.dodv

- oo [[ 0[5 ) (Fore - 62 + 2Re( 20 - Foe e
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Sinceu{0) = 1, f2(0) = ||f||2,, we obtain

L2’

f f b(cost) f2(g’ — g)?dv.dodv
= [IfII%, ff b(cosd)u. (g’ — g)*dv.dodv

_(272T)3”f“ f f (E cf) Re(f(0) - /(¢"))3(¢)3() )dédor

(271)3 ff (E 0') Re f2(0)_ fz(f ))g(f )g(f))dfda'

For the last term, we note that

ol <)o e [l o [ o=

Now consider
f b(é -0') ‘1— g Ve
sz \l€]

If [Vil§] > £, we choose = ﬁvl < 7/2 to havell — eV | < ||| sind for any 0< 6 < 6.

And if 2 z 6 > 6, we havel — e V4 | < 2. Hence,

/2 1
f (|§| )|1 e Ve |dO'<C|V||§|f§ 1233|n9d9+cf6 mde

< CVIIE6™251 + €672 < CvPSIg%s.

do-.

On the other hand, if/|¢| < 2, we have directly

it/ 2
f (Ifl )‘1 Ve 'do’<Cf0 91+25|v||§|sm9d9

< CMil¢l < CIvsErs.
Thus, we have

f f b(é—| -a) |£2(0) - F2(¢")]1612(€)dédor < CIIF Il
By using the regular change of variables» £*, and by noticing that
£ =0 0)=¢ - L0 Kl=tang,  cosi= 5o

cos” [E4]
) _ 1
|W = 2cog0/2,
we have

f f b(é -cr) |72(0) - T2(¢7)|16P( ") dedor

_ 1 E o NI e A2t
‘ff co§0/2b(2(|§+| 7) 1)|f2(0) f2(p(e", 0))||812(e )0 dor
< CIIfIIF gl

Hence,

[ (@ cr)Re (P2(0) - P2€))ate8@dedo] < CIIE, ol
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Similarly, we have

Uf |§| Re (2(0) - A1¢))8(€)8(€)ddlr| < Cll VR I gl
Therefore, we have proved (2.3.1) by using (2.2.8). a

In view of future application of the energy method, the scalar product of the collision
operator with a test function is given by

Proposition 2.9. There exists C 0 such that
|(F(f, 9), h)Lz(m < C(IIfIILg llglll + 119ll.2 |||f|||) (i .
Proof. Note that
(T(f. 9). h)

= (17Qu 21, 1) )Lza@

f f b(cosa)ul/*(f/g’ - f.g) h

== b(cosH) frgf — f.g)(u2h — u2 1
< %( f f b(cosg)(f*fg, B f*g)z)l/z
g (fff b(coss)((u.)"*h - (#;)1/2”)2)1/2
1

ZAL2 U2

L2(R3)

N

For B, we have

B<?2 f f f b(cosO)u. (' — h)? + 2 f f f b(cosa)n?((u')"/? - ulfz)z = 2|2,

where we have used the change of variables.j — (v, V,) for the first term andy, v.) —
(v., V) for the second term. Similarly,

A<?2 f f b(cosh) f.2(g — ) + 2 f f b(cost)g.2(f’ — f)2.

Then (2.3.1) implies that

A < C(IIfIIZ, gl + il N1 117 ).
which completes the proof of the proposition. O

3. COMMUTATOR ESTIMATES

3.1. Non-isotropic norm in RS,. We now define the norm associated with the collision
operator on the space of,{). Forme N, ¢ € R, set

B?(Ri,v)={geS’(va) 9oy = D, f W 35,9, - )|||2dx<+oo}

lal<m

where||| - ||| is the non-isotropic norm defined in (2.2.1).
First of all, one has
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Lemma 3.1. For any? > 0,y,8 € N3,

(3.1.1) lIW* 8% Palllggrs) + IPOW* &%, Illlgo(es) < Crpllk g|||_2(Rs),
(312) CollglZg s, — ColOIE e < (L8 9) sgeg, < CalllZg ey
and

(313) ||g|| RG) + ||g||L2(R3 HS(R3)) = C”'g”IBO RG) < C||g||L2(R3 Hs (R3))

Proof. By def|n|t|on of the prOJectlon operat®t, we have

Pg = ag(t, )2 + Zbg,(t X) Viu2 + cq(t, X)IVPeM?,
=1

with
ag(t, ) = f olt, X VY 2()dv, cylt. ¥) = f oft, x YV W),
RS v
and
g, (6, X) = f olt, % V) Vi 2(v)dv, =123
\"

Thus (3.1.1) can be obtained by integration by parts. To get (3.1.2), we use (2.2.2) and
(2.2.5) to obtain

G5 ee) > (Lg 9).2es,, = Colll(l = P)lo e,
> —|||g|||Bo(R6) - CollPgliZy s,

> 2|||g|||50(R6) Callgl? zs)-
Finally, (3.1.3) follows directly from (2.2.2) and (2.2.8). O
3.2. Weighted estimates on commutators We will use the following notation, foy €
N8,
(3.2.1) 7(F, G, ity) = Qu, F, G) + f b(cost)((uy). - (uy), )F.G dv.dor,
wherep, = p, (V) yu(v) = () is a Maxwellian type function of variable

In this notation, (2.1.5) is equivalent to
I'(f,g) = 7(f.9, V).

And the Leibniz formula gives

322  HAT(f.g= > Cpr TERH. 92000 ms )
a1+az=a, B1+B2+f3=p

First of all, let us recall the following lemma from [12].

Lemma 3.2. Let£ > 0,0 < s< 1/2. There exists G 0 such that
(W Q(f, @) - Q(f, W g)), h)

< C||f|||_}(R3))||g|||_§(R3)||h||L2(R3)~

LA(R?)
Using this result, we shall show that
Proposition 3.3. For any¢ > 0,
(3.2.3) (WT(F, G, y) = T(F. WG, pry). h)Lz(Re) < ClIFlizlIGlILzIhll -
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Proof. From (3.2.1), it follows that
(WT(F, G, uy) = T(F, WG, ), h)
= (W Qly F. 6) - Q. WG). h) ,
+ f f b(COS8) (1t — 5, )FLG (W' = W) h
= Bl + Bg.
Lemma 3.2 implies that
By < Clluy Fll:NIGllizlhlle < ClIF[IL2]IGll2llhll .

For B,, since we have assumed that& < 1/2, we get

WE — W PR 1/2 _ 2 1/2
B, < (ff b(cose)||:||c3'|2| Y ') (ff b(cose)sme(,uy*—,u’y*) |h|2) .

(2.2.4) implies that
’ 2 2
[ otcosaey Y10 < i i,

L2®)

while, using
W’ = W2 < sir? o (WE)? + (W)?) < sinf @ (WEA(W)?,

we get

t _\£\pl)2
f f b(cos9)|F;|2|G'|2% < f f b(cosb) sing (W’ F)>(W’ G)"2
< C|IF|2 zIIGIILz,

which leads to completion of the proof of the proposition.
Similarly, we have also

Proposition 3.4. There exists a constant £ 0 such that

(3.2.4) ‘(T(F, G. ). h)

Lowy| S CIFIl IIGHI -+ 1GHg IIF ) bl

Proof. By the Cauchy-Schwarz inequality, we have
(T(F. G, uy). ) Lz(Rs) f f b(coss)(uy.)(F.G' - F.G) h
=3 f f b(cos)(F.G' - F.G)((uy.)"?n - (1},)"/H)

< %( f f (cost)(FIG' - F*G)Z)l/z

12
X (ff b(cos@)((ﬂw)l/zh _ (#;*)l/zh’)z)

<lavzc g,
2
By using the estimation of the terfin the proof of Proposition 2.9, it follows that
A < C(IIFIIZ, IIGIP + IGIZ, IIFIIP)
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and
< (1l I NI + 110112, e, 117) < CHIbIP.

We are now ready to prove the following estimate witfiefientiation and weight.

Proposition 3.5. For any¢ > 3, and N> 3, we have, for alg € N |8 < N,
(W rct. o). )

L2885, < C||f||H;“(R6) 19l gy zs) |||h|||5gg(R6)-

Remark 3.6. In fact, this proposition holds even whén> 3 + 2s, and N> 3 + 2s.
Here, we consider the case whérr 3,N > 3 with 0 < s < 1/2 for the simplicity of the

notations.
Proof. Using the Leibniz formula (3.2.2) gives

(W @), h) e = D Chls (T 1. WG, pys,). h)

+ D Ch (WIT (071, 079, g, ) — T £, WP, g, ), h)

L2(R%)

L2(RSy)

Then from (3.2.3), we get
(WT @1, 29, ) - T 1. Wog, ). 1)

1/2
<C( f 1671 1201 5 ) Ihil s,

C ||361 f|||_«>c(R§; Lg(Rg))llaﬁzglng(Rgv) ”h”Lé(Riv)’ ?f |B1l < 1;
6P f||L?(R‘iv)”&&gl|L”°(]R§;L?(R§)) 1Nl 2.5 if 181l > 2.

Since|8:1] < 1 implies|81] + 3/2 < 3 < N and|3y] > 2 implies|B,| + 3/2 < |3, it follows
that

L2(®RY)

(3.2.5) ‘(vv“r(aﬁl f 09, pg,) = T(@" £, W99, pig,). h)

L2(RSy)
< Il eyl Gllgei ey Nl e,y

On the other hand, {B;| < 1 so thaiB;| + % +s< 3 <N, we getfrom (3.2.4)

‘(7’(651 f, W%, g, ). h)

L2(RS)

< C( f 16 17 sy (W 2 IZ + W27, )X

1/2
f W 2% ) (110 11 + 116F f||H5(R3))dx) IRl ggec
< C(1F Flluo s sy + 107 FIE e g, ey MOl g e N Lses)
< Ol fllypea2-sr e Ml g oy 1Moy

Hence, forB| < 1, we have

‘(‘T(&Bl f, W'o”g, g, ), h)

voesy| < CllTIkees 19l geei o) 0l es)
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We now consider the case whif| > 2. First of all, assume Z |81] < |8] — 1 so that
1B2| = 18] = |81] — |B3| < |B] — 2. Then, we get

’(7-(331 f, W'o”g, g, ), h)

L2(R5,)
< (Il oy IV Ol o3, ety

+ ||W€5629|||_W(R§; Lg(Ré))HaBl fllLoms; Hé(Ri)))mh”lBS(Re)
< Cllfll sy IWATZAIF2GI, 6 Nl 52(55)
< ClIFllyp-rvsge) Gl gor-2s312+5ve i 1D 83

< ClIF ey 19l g e 1P -
We turn next to the case whga = 3, for which we have

(T 1. Wg, vi), h) r(@f, W'g), h)

L2(RS,) ( L2(RS,)’

Since we want to avoid using the non-isotropic nornf afn the right hand side, we can
not use the estimate (2.2.3) to complete the proof. So we proceed ffeesedt way, use
firstly (2.1.5) to get

(r@f, w'g), h)mmv) = (Q(vE 1, Wig), h)LZ(REN)
+ f f f b(coss)( vz — Vit )@ F).(W' g)'hdv.dordvdx.

On one hand, (2.1.2) witin = 0, @ = —s, implies that

|(Q(Vﬁaﬁf, Wo). ),

< Cllihl syl VE & fllizs; L1 o W Gl e Hzse)
< Cll Fllre ) W Gl 2250 gy 1Dl g

On the other hand, we can write

f f f b(cos)( vz — Vil )@ 1), (W' g hdv.dodvdx
= f f f b(coss)( v — Vil )@ ), (W' g)'(h - )dv.dodvdx

+ f f f b(coss)( vz — Vil )@ ). (W' gy hdv.dordvdx
=D1+Ds.

By the Cauchy-Schwarz inequality, one has
) 1/2
ou < ([ []] bteosa® 2wy () - ) dvdove

x b(cosd)(u* + (1)) (h - h)2dv, do-dvdx -
([ [ roosn« i+ )



THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF 21
Lemma 2.5 yields
[ [ otcosome 0w ey (g - ) awdove
<C fR \ fR . 1@ PIW QA (v.)*dv.ddvdx

<C fR3 107 1733y IV O35y X < CINP P10y WO, 2
< ClF I ey WO AR Z G ey < CITIE 1 101 e -

while from Lemma 2.8, we get
f f f b(coss)(u2/* + (,1;)1/4)2(h — h)2dv,dodvdx

<4 f f f b(cos)u/?(h — h)2dv,dodvdx< C|||h|||;O(R6).
0

Therefore, we obtain
D] < C”f“Hf\(Re)|”g|“Bf(RB)|||h|||Bg(R6)'
For the termD,, we have

f fff b(cost)( iz = Vi )@ W' g)’h'dv*dadvd{
- \f ff b(coss)( i ~ VA= )@ ). (W ghdv.dordvely

=C fRi fR @,

<C f 16 Tl e IWF Gl sl
RS

W g hi()?5(v.)?*dv,ddvdx

< ClP Fllzez;iz,,. @apl W Ollos, e INls).
so that
D2l < Cllflhys, . geollszgesyINlggesy:

Therefore, it follows that

(3.2.6) '(r(aﬁ f, W'g), h)

cey| < ST, o lldlazeeinllsges)

Finally, for the casés;| > 2, since 32+ 2s < 3 < N, we have also

‘(fr(aﬁl f, W'6%g, ug,). h)

The proof of the proposition is then completed. O

< Cliflln s 19z as Dl gos) -

L2(®RSY)

By using the argument in the proof of the above proposition, the following proposition
follows from the Sobolev imbedding theorems.

Proposition 3.7. For any¢ > 3, we have, for alg € N®, || < 2,
@27) |t g). h)

L2(RS,) < Clifllnegsy M9lllgzsy NDlllgo(zs)-

Finally, the linear operators can be also estimated as follows.
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Proposition 3.8. For ¢ > 3, we have for ang € N°,

(3.2.8) (W i £a(F), ) oy < Ctell sy Ml
If |8 > 1, we have
(3.2.9) (LW o) - W e L2(@). ),

< Cw|,((||9||le(Ra) + |||g|||3f\—1(Re)) lIhlllso(ge),
and for|g| =0

(3.2.10) |(£2W @) - W' L(). h)

L2(e5) < C”QHLf(RB) |||h|||3g(R6)-

Remark 3.9. On the right hand side of (3.2.7), the ten¢g|||5§(Re) comes from the Sobolev
imbedding
Loo(R HZS(RB)) S H3/2+25+5(R6) 5 B (RG)

wheree is any small positive number. Thus the order gfadentiation is equal t@. Note
that this is due to the nonlinearity in the operatbf-,-). For the linear operators, the
estimates given in (3.2.9) and (3.2.10) do not involve this term.

Proof. For the proof of (3.2.8), by using the Leibniz formula (3.2.2), we have
— (W Ry La(f), h)LZ(RG = (W I (f, V). h)
= 2Ol WP 1), 1),
+ D Co (W@, P N, ) = T F, WP N, pag,), )
= E]_ + Ez.
Then (3.2.5) implies

L2(RS,)

L2 (RG

B2l = [ Gl ps (WIT O £ 0 VL ) = T, WP V). )
< Cllf ool Vit llsgs) lINllgggey < Cll Tl e IDllgg¢es)
and (3.2.4) implies also,
|E1|—'Zcﬁ1 (7P f. WP i, g, ). )
< Cllfllyo gy Nl ggs)

L2(RS)

L2(RSY)

where for the case whefy = 3, we have used (3.2.6).
For (3.2.9), since-£L1(9) = I'(v/1, 9), by using again the Leibniz formula (3.2.2), we
have

= (W L1(@) = LW 3y @). 1) ,
= (W' &I (Vi . @) = T(Vi, W'k 9). h)

)<

Zcﬁl (WT (0P Vi 079, g,) - T VL. Wg. p,). h)
=F1+Fo.

L2(RS)

L2(®R3y)

L2(RS)
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Then (3.2.5) implies

Fal = [ Ol (WT (@ R 0. ) ~ (0P VR WG, ). )

< Il VAl ey Iy oy sz, < Clllp ey 1Mlgges,

which also gives (3.2.10) .
On the other hand, fdf4, (3.2.4) implies that, whejs,| < |8| -

‘(‘7—(8/31 \/ﬁ s W[aﬁz g, Hp3 )’ h)LZ(Rg,v)
< C( f 16% VE I3 g (IOl + W P2, oy )X

L2(RS)

1/2
f ||W58329||L2(R3)(”|681 \/_|||2 + ||(931 \/_”HS(R?‘))dX) ”lh”lBg(Ra)
< Cll Vel
< C|||g|||8f\—1(Re)|||h|||gg(R6)‘

Then the proof of the proposition is completed. O
4. LOCAL EXISTENCE

4.1. Energy estimates for a linear equation.We now consider the following Cauchy
problem for a linear Boltzmann equation with a given functfon

(4.1.1) 09+v - Vig+ L1g=T(f, g) - Lof,  dlo =o.
which is equivalent to the problem:
atG +V- VXG = Q(F, G), Glt:O = GO’

with F = u+ ju fandG = p + \ug.
We shall now study the energy estimates on (4.1.1) in the function SﬁﬁceFor
N > 3,¢> 3 andg € N5, || < N, taking

¢t x.v) = (1 (O W 3 g) (L. X, ).

as a test function oR3 x RS, we get
2 dt |6ﬁ g”LZ(RG) (Wf[aiv’ V] - ng, Wfa‘;’vg)
= (Wgaivr(f’ g), W[a‘i,vg)
where we have used the fact that

(V V( ('f)g(vg) Wfa‘;(vg) =0.

L2(RS)
Applying now Propositions 3.5 and 3.8, we get for ang B < N and|g| < k,

5 dtna‘f Ol es) + (La(W'dug). WoL0)

< Ol Flleey N0y ey + 1OME ey + 11 Fliesy e

L2(RS) + (W[a‘;(,wEl(g)’ Wf(()ivg)
— (WrahuLao(T), Wdh0)

L2(RS)

LA(R®) L2(RS)’

L2(RS)

+ (Igllgscesy + Mgllgs-sceey JGllgsesy -
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By taking summation oveld| < k, Lemma 2.3 together with (3.1.2) and the Cauchy-
Schwarz inequality imply that

C
(4.1.2) ”g”Hk(Re) _0|||g|”5k(Re) < Cicell Fllnxges) |IIg||I3k(R5)
+cu0@ﬁmqﬂﬁwwg+mm@ﬂm) 3<ks<N.

Fork = 1,2, Proposmon 3.7is used to get
(4.1.3) IIQIIHK(RG) IIIQIIIBk(RG) < Crall fllzee) |||9I||83(R5)

+ Cre (IIgIIHk(RS) + |IfI|H3(Rs) + I||9|I|3k 1(Re))
while fork =0
(4.1.4) IIQIILZ(RG) |||9I||BO(R5) < Collfllnzs) |I|g||IBo(R6)

+%4mbm+mmmﬂ

whereCy is the constant in (3.1.2), which is independenkofiandN.
TakeN > 3, whenk > 2, by taking a linear combination of (4.1.2) and (4.1.3), we have

G5
(me) mmm)z%|mwm

O

s;@%wMM@@+mmm+wmm)

|mww ?w@%q

| D

< mewmwm+wmm+w@m)

+QMWMWMWMMHMMMHW@MHM@WQ-
By induction and by using (4.1.4), we have the following estimate

~ 2
(4.1.5) dt[ > cklngnHWR%]+-co|ngmbRg

O<k<N
<%mwwmmmwﬁwmm+wmm)
for some positive constan@o < Co, Ck¢ andCN,[. Notice that

(4.1.6) 190 sy ~ D CeallTlugeey:
0O<k<N

We are now ready to prove the following theorem.
Theorem 4.1. Let N> 3,¢ > 3. Assume thatge H)(R®) and f e L=([0, T]; H}(R®)).
If g € L=([0, T]; HN(R®) N L%([0, T]; BM(R®) is a solution of Cauchy problem (4.1.1),
then there existg, > 0 such that if

Il o1y HNGeey < €0,

we have

AL MRy wpesy + 19020y mvey < CE TG0l sy + € T)-
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for a constant C> 0 depending only on ¥ .

Proof. Choosinge = 2? ,

[Z Ci ||g||Hk(Re)] = Nl e,

0<k<N

< 2819 ey + €0) < CC D, Ot 10y + €0):
O<k<N

and

df _ Co o
d—t[e > ||g||ak(Re)] € lIgllZn ey < Cege™"
0<keN ¢

Thus we get (4.1.7) for some const&ht- 0 and this completes the proof of the theorem.
m]

4.2. Existence for the linear equation. With the energy estimate given in the above sub-
section, we can now prove the following local existence theorem by using the Hahn-Banach
theorem.

Theorem 4.2. Let¢ > 3,N > 3and g € H)(R®). There existg, > 0 such that if
I llLsqo.1; HpvGeey) < €o,
then the Cauchy problem (4.1.1) admits a unique solution
g€ L([0, T]; HY(®®) N LX([0, TT; B'(R%)).
Proof. We consider the following Cauchy problem :
(4.2.1) Pg=00+Vv - Vyg+ L1g-T(f, g) = H, g(0) = go.
Forh e C*([0, T]; S(RS,)) with h(T) = 0, we define

(@ P h)LZ([o,Tl:H[N(RG» =(Po h)LZ([o,T];HP(RG)) :

so thatPy , is the adjoint of the linear operat@étin the Hilbert spacé?([0, TJ; H}\‘(RG)).
Set

W = {w=P} b heC([0,T]; S(RE,)) with h(T) = 0},
which is a dense subspaceld{([0, T]; H)(R®)). And we also have
Pr.o(h) = =dth+ (v - Vi)*h+ L1h+T"(f, h).
Then

(h’ P h)H?‘(RG) 2 dt”h(t)”H“(RG) (V - Vxh, h)H?'(RG)
+ (L), h) o = (TCE ). )

Same as Theorem 4.1, fpf|l « o 1;; HN(Re) < €0, WE have

.
f eZC(s—t)'(h, P, [h)HN o

t

HY (%) HY (%)

dt 2 [I(0) ey + f CELININ(Z0 5, dS-
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Thus, forall0O<t < T,
IO ey + CINIE <C

L2(LT]; BYERS) = (h’ Pre h)LZ([t,T]; HN(RS)
< ClIPN (Mlleqe, impeep Nz T sy -
Hence, we get
(4.2.2) INll2qo, 73; Hvgaeyy + MNlLeqo,3; v grey) < CTIPR, (MllLzqo, 15; HivGes) -
Since
IRl 2qe, ;N ey < Clibllzgery; sy ey
we also have
(4.2.3) Il 2go.1y; sesy) < CIPN (Mllzgo, 1); sy -
Next, we define a functiong on W as follows

GW) = (H, M)i20 13; wy sy + (Gos h(0))nnes)-

Then, ifH € L%([0, T]; H} (R%)), (3.1.3) gives

IGMW)I < IRz o, 3; 1y oy IDllz o, 71; 1Y oy + 1190l ey IOy o)

+s
< CliHIlzqo,; 1y oy INllzgo.my; 8o + 11Gollkan sy IN(O)l ke
< ClIPN, o (Mllzo, 73 Hvgesy < ClWIlLz o, 3; ey -

where we have used (4.2.2) and (4.2.3).
Thus,G is a continuous linear functional c(fW; Il Mizqo, 1 HNRG))). Now, there exists

g € L%([0, T]; H)(RS)) such that for anyv € W,
GW) = (9 WLz(o, Ty; Hes)):
by Hahn-Banach Theorem. For ahg C*([0, T]; S(RQ,V)) with h(T) = 0, we have
(g» PN ¢ h)
and by the definition of the operat#y, ,, we have also

(Po. h)

L2(0, TEHNES) (H, W)z rvesy + (G0 NODpees),

o pzasy — (T Wiz Tieesy + (G0, MO e,

where
h = ANWZANh e C=([0, T]; S(R®)) with R(T) =0,

whereA = (1 - Ay,)?. SinceANWZ AN is an isomorphism ofh : h € C*([0, T]; S(R®))
with h(T) = 0}, we have shown that il € L%([0, TI;H) (R)), theng € L%([0, TI;HN(RS))
is a solution of the Cauchy problem (4.2.1).

It remains to take

H = —L5(f) = I(f, Vi),
to get
(H, D)o, 73 mvesy| < CllFllzgo, 1y; mivgesy IllLzgo.y; 8 esy)-
Theng is also continuous of¥. And this completes the proof of Theorem 4.2. O
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4.3. Convergence of approximate solutionsIn this subsection, we prove the local exis-
tence theorem.

Theorem 4.3. Let N> 3,¢ > 3. There exist;, T > Osuch thatifg e H?‘(RG) and
I9ollNrs) < €1,
then the Cauchy probleii.3)admits a solution
g€ L*([0.T]; H}'(®%) N L0, T]; B;'(R%)).
Remark 4.4. By the equation irf{1.3), we have, fof < s < 1/2, By using the equation
(1.3), we have, fob < s< 1/2,
&g, V- Vxg € L([0, T]; HIL'(R®)).

Moreover, if we go back to the equation (1.1), we have that

f=u+ut?ge HY(O, T] x Q x R%),

for any¢ € N and any bounded domai@ c R2, and thus the Sobolev embedding implies
that f is a classical solution of equation (1.1) if N7/2 + 1. We will use this properties
for the smoothinggect of Theorem 1.1.

For the proof of Theorem 4.3, we consider the sequence of approximate solutions de-
fined by the following Cauchy problem,e N,

6tfn+l +V - foml — Q(fn, fn+1)’ fn+l|t=0 — .':07
wheref" = 4 + u'/2g" and f° = f,. Note that it is also equivalent to
(431)  ag"t+v- Vgt + Lg" -T(@, g™ = - L20", "o = Qo
Proposition 4.5. Let N> 3,¢ > 3. There exist;, T > 0such that if g € H)(R®) and
lI9ollHn(ge) < €1,
the Cauchy problem (4.3.1) admits a sequence of solutions
{g".ne N} c L*([0, T]; H}'(R®) n L*([0, T]; B)(R%)).
Moreover, for all ne N,
(4.3.2) 19l o.73; Hveeyy + 197 2o 7y s esy) < €0,
whereg, is the constant in Theorem 4.1.
Proof. (4.3.2) will be proven by induction on. Firstly, consider the equation
ag' +v - Vug' + £1g" - T(00.9") = —L2G0.  G'k=0 = Go.
Whene; < g, the existence oft is given by Theorem 4.2 satisfying
gt € L¥(0. T]; HY'(R%) N L2(0. TT; 8)'(R?)).
From Theorem 4.1, we can deduce
19" o.1; sy + 19YIL2o.T ey < CE TlIdollnze)-
Thus (4.3.2) holds wheg is chosen to be small comparedeto
Forn > 1, under the assumption that
19l o1y Hvesyy + 197 Loqo 7y, shesy) < €0,
Theorem 4.2 yields the existence of
g™ e L™([0, T, HY'(R®) N LA(0, T]; B)(R)).
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From Theorem 4.1, we can deduce
n+1”

CET(IolZnge + €5T)-

n+12
“g ” m([O’T]; H?‘(Re)) + ”g HP(RG)

Loy 8y <
and this gives
19"l o1y HNERS) T 19" 2o 7 BY(®9) < €0,
whenT > 0 is suficiently small,
Thus we prove (4.3.2) for all € N, and this completes the proof of the propositiom

It remains to prove the convergence. &t= g™ — g" and deduce from (4.3.1) that
AW + v - VW' + LW - T(g", W) = T(wW™ L, g") — Low™t, Wio = 0.

Similar to the computation for (4.1.4), we obtain

d 2 CO 2 n 2
aIIV\PIIL[g(Re) + 7|IIV\P|IB?(R6) < Cocllg s zs) |||\APII|39(RG)
+ Co W' Iz (19 M g3ez) + DI llgoes)-
If & is suficiently small, this yields,

d .
GtW ey + CallM G0 < CollW™ iz,

L3(R9) BARS) =
which, in turn, gives, ifT is suficiently small,
Wl o 132 ey < /1||W_1||Lw([o,T];Lf(Re)),

for somea € (0,1). Thus we conclude that the sequerig® is a Cauchy sequence in
L=([0, T]; LAR®)). Letg be the limit function.

By interpolation with the uniform estimates (4.3.2), we see that the sequence is strongly
convergent in

L=([0, T]; HY(R%) n LA([0, T]; B;°(R%)
for anys > 0. Furthermore, by using equation (4.3.1) and Proposition 4.5, we see that
{0:g"} is uniformly bounded irL=([0, T]; H}“jll), so that it is a compact set in the function
space
C(0, T.[; HY"®(@QxRY))

for any bounded domaif? c R2. Now we can take the limit in equation (4.3.1) and tiqus
is a solution of Cauchy problem (1.3).

Finally, by a standard weak compactness argument, we can extract a subsequence of
approximate solutions such that

g" — g e L™([0, T]; H}(R®)) weakly*,
g"— ge L%([0,T]; BNR®) weakly,
which shows that
g€ L™([0, T]; HY(R®) nL([0, TT; B} (R%)).

Now the proof of Theorem 4.3 is complete.

5. QUALITATIVE STUDY ON THE SOLUTIONS

In this section, we will prove two main qualitative properties of the solutions to the
problem considered in this paper, that is, the uniqueness and non-negativity.
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5.1. Uniqueness. The uniqueness of solutions can be proved in a larger function space as
stated in Theorem 1.2. To obtain this theorem, we now first prove two preliminary results
in the following lemmas.
Sety(V, X) = (v, )2 = 1+ |vi2 + [x2 and
m @A)

T e(VX) L V2 (X2

@l

Lemmab5.1. For | > 4, we have

W, — W, <C sin(g) (—W', ; (\\//V";;N S ginf-3 (g)w;,,,*)
(5.1.1) <C(OWW, 5, +6072W, ),
Wi
where V\LL* = ga(v;; 3’ and also for I> 1,
0\ W W WWL.
(5.1.2) |W”_stcg%§)dW@!s S
Proof. Fork > 0,a > 0, set
/1k
P = 1+a

Then fora € [1, o[, we haved Fy(2) > 0if k > 1 and L Fi(2) > 0if k > 2. Sinced Fi(2)
is positive and increasing on,[&[ if k > 2, it follows from the mean value theorem that
fora, A >1

/7 d ’ 7
[Fk(2) — Fe()l < aFk(/l +A=ADA =)

Settinga = (V)2 1’ = (V')?, we have

d
IF((W)?) = F((v))] < o FlRUW)? + IV = V)2V + v = V]IV - V|
< 2kFic12QUV)? + IV = V)V = V],
becausgd — | < 2v— V|V + v - V[? < M? + 2v - V]2 and VAZ Fi(2) < kFic1/2(2).
Therefore, we obtain, choosirag= |x?
W v-vi o v
W2 +Iv=VvPR+a W +v-V]P+a
v—v|
W2+ Iv-V[+a

(5.1.3) <G V= VW EF((w?) + C
=1 +1l.
Note that(v)? < 2(v,)? + 2|v — v,[2. SinceF is increasing, we have

(VD2 + V=V, |2
(V)2 + V= V|2 + |X2
W+ Wi_sWs,,

‘P(V*’ X)

| <C v=V[w3

. (0
<C S'”(E)
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On the other hand

v — V.| sir (£
n<c 3)
L+ (1 sir? (§))M2 + 3 sin? (§) Iv.[2 + X2
. O\W +W..
<Gsin2(4) W W
2} @V, X)

Sincev andVv are symmetric, we get the first conclusion. The second one is a direct
consequence of the first inequality of (5.1.3). O

Lemmab.2. Letle N. If 0< s< 1/2, there exists G 0 such that

(5.1.4) (W QF. @) = QF. Wy @) 1),
< Cllflles @z ey Wea dllizgs)lINlLzs).
Moreover, if > 5 then

(5.1.5) (W QF, @) = Q. Wt @) 1),
< ClIWGi FllLz@e) 19l 3123y IMlLzre)-
Proof. It follows from (5.1.2) that

‘((Ww,l Q(f, 9) - Q(f, W, 9)), h)LZ(R6)

| f f f f b f/g/(W,, - W,.,) hdvdudody

c f f f bl6l IO 1), (W0l Ihl civdvdordx

- ¢ f f f f bIAIW ). I(W,16)l W] dvdy dordix

1/2
o [[[] bierias 1.1100 @Pavetuoa)

x(fff bl6l I(W f).| I dvdvdodx)

= CJ]_ X Jo.

IA

IA

Clearly, one has

X< C||f|||_»°(R§;LI1(R3))||W¢,|g||fz(Re) fz b(cost) |0] do- < C”f||L°°(R§;LI1(R\3,))“W¢,Ig||Ez(R6)~
s

Next, by the regular change of variables» v, cf. [6, 16], we have

2- fff Do(Ve, V)I(Wi ). I [2dv, dvdx,

B o(V.,V,0) /4 ~1-25 o
Do(v,V) = ngz Co§(0(V*’V,’U)/z)b(cose(v*,\/,o-))do- < Cfo Vi siny dy,

and

where

VvV -V,
- .
|V/_V*|

cosy = v =0/2, do = sinydyde.

Thus,
35 < Clifllegpean I s):
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and this together with the estimate dngive (5.1.4).

We now prove (5.1.5) by using (5.1.1) instead of (5.1.2). For this purpose, Whén
we write

(W QT @) - QT Wey @), ),

C{ f f f bgl I(W,5f),l [(Wig)'| [hl dvdy.dodx
+fff b16'2 |(W,, )] 1g'] || dVd\lkdO'dX}

= Mi+ M.

IA

The estimation onM; can be obtained following the proof of (5.1.4) except for the
variable. Indeed,

mo<c [( [[[ b iona f). i giavauds
) 1/2
x(ff b1l 1(W,.3 ).l [ dvdv.do) ™ dx

< C||9||L°°(R§;LIZ(R3))f||W¢,3 fllLaee) Dl 2s) dX

1/2 1/2
< C”gHLW(Ri,LIZ(R\%)) (f||W¢,5 f“ﬁz(R‘:})dX) (f”hHLZ(R\s/‘)dX)

< ClWess fllzges) 191l 3122y IDllLzre).-

)1/2

M, can be estimated as follows. Firstly, we have

2
M2 =C2 ( f f f bi6l!2I(W,, ). lig] I dvd\4do-dx)
<C? f f f bl6'~2~2|gll(W,, f).[2dvdv.do-dx
xfff bg]'-2*2 g’ [2dvdv.dodx

=M2,1 X Mg,z.
Then, ifl =2 3 - 2s— 1> -1, thatis| > 2s+ 3 + 2, we have
Mz < Cliglliges: ey W fllF2 g

On the other hand, foM,, we need to apply the singular change of variales» Vv'.
The Jacobian of this transform is

V.| 8 : 8 3

Wi -keo| R-kealsin(o/2)

< 16972, 0€0,7/2].

Notice that this gives rise to an additional singularity in the adgleound 0. Actually, the
situation is even worse in the following sense. Recall ¢hatno longer a legitimate polar
angle. In this case, the best choice of the pole’is= (V' - v)/|v' —v| for which polar angle
v defined by cog = k” - o satisfies (cf. [6, Fig. 1])

_n-0 o

v > do = sinydyde, VS [Z’ E]'
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This measure does not cancel any of the singularitycdss), unlike the case in the usual
polar coordinates. Nevertheless, this singular change of variables yields

Mio=C f f f b(cosd) |6/ 2|(g)| |2 dvdv.dodx

<cC f f f D1(v,V)I(g)l I Zdvavdx

whenl - 2> 3 + 2sbecause

/2

Di(v,V) = f ¢-2+32p(cosg)do < C (g — )y T2 2gy <
SZ

/4
Therefore,
Mz < C||9||L°°(R§;L1(R§))||h||fz(Re)-
Now the proof of (5.1.1) is completed by using the imbedding estimaﬂe>fo§,
I9llLaeg) < Cllgllzs)-
And this completes the proof of the lemma. O

We are now ready to conclude the proof of the uniqueness theorem.

Proof of Theorem 1.2 : SetF = f; — f,. Then we have

(5.1.6) { Eth:ov:- ZXF = Q(f1, F) + Q(F, f),

Let S(r) € CJ’(R) satisfy 0< S< 1 and
S(r)=1, 1<l ; S(r)=0, |r| =2
SetSn(Dx) = S(272N|Dy[?) and multiply W,,;Sn(Dx)?W,, F to (5.1.6). Integrating and
letting N — oo, we have
1d )
> Wl FOlzes) = (Wea Q(F F) + W Q(F, 2) W, F)
= (V- V(e YW, Wy, F) 2(e),

becauseV- VySn(Dx)W,,1F, Sn(Dx)W,,1F)2@s) = 0. The second term on the right hand
side is estimated bLV\NwJFHfZ(RS). Sincef; > 0, from the coercivity of-(Q(f1,9), g) it
follows that

(QUf1, W,iF), W, F)
By Lemma 5.2, we have
|(Wer QUf2, F) = Q(f1, W,y F)), W F)

< CllfallLs e @ey We FllE2 ze)s

L2(RS)

ey < CITLON e Ly Wt F Oz e -

L2(R%)

and
(Wer QF, F2) = Q(F, Wi T2)), W)

< Clifallis @23 W F”EZ(RB) :

L2(R®)
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Finally, forl > 7/2 + 2s, we have

[(QUF. Wi F2) Wit F) | < CIIQUF, W o)l W F Oz
1/2
F(t, X, (x)?
<cm |F<t)||Lz(Re)( f || (< )z) s [ )
< C“th,l F(t)“LZ(RG)” f2(t)“L“(R3 HZ, (RD))

becausex)™? < W, and(x)?/¢ is a bounded operator d#?s uniformly with respect to
X. Thus, we have, forany@t < T

”WL,D | F (t)”LZ(RG)

=C (” fl”'—‘”(]O»T[XRi; LLR3)) +1l f2||Loo(]Q’T[XR3 H2s

I+2s

e90) W FOIF 2 g

Therefore W, F(O)llL2s) = 0 which implies||W,,F(t)l| 2gs) = O for allt € [0, T[. And
this givesf; = f,, and thus completes the proof of Theorem 1.2.

Remark 5.3. For the function space considered in Theorem 1.1, the uniqueness of solu-
tions is a direct consequence of Theorem 1.2 if there exists a non-negative solution. It is
because ge H¥ and ge L*(]0, T[xH¥) with k. € > 3imply © = u + yugo € L¥(RE; HZ)

and f=pu+ g € L*(10, T[xRE; HZ) for any m, respectively, andx 3/2 + 2s.

5.2. Non-negativity. In this subsection, we will prove the non-negativity of the solution
obtained in Theorem 1.1.

Theorem 5.4. Let N > 3,¢ > 3. There exists; > 0 such that if g € H)(R®) with
u+ut?go >0 and |gollyns) < €, and ge L=([0, T]; HN(R®)) is a solution of Cauchy
problem (1.3), then we haye+ /g > 0on [0, T] x R®.

Proof. By applying the Remark 5.3 on the uniqueness to the Cauchy problem (1.3), it is
enough to prove the non-negativity of the approximate solutions given by Proposition 4.5,
that is,

(5.2.1) "= p+u?g" >0, neN.

Again, this will be proved by induction. It is clearly true for= 0 by takingg® = go, and
so we now assume that it is true for somand will prove that (5.2.1) is true for+ 1.
From (4.3.1),f™1 = u + u¥?g™* is the solution of the following Cauchy problem :

{ O fM v Vi = Q(f, £,

6:22) Mg = fo =+ 4'/200 > 0

Take the convex function
I N
B9 = 5() = 55(s)
with s~ = min{s, 0}, and notice that
,35( ) =

Settingg(x, V) = (1 + |X|? + [M?)~2 and noticing that
Bs(f™He(x. v) = min{f™, 0}g(x,v) € L=([0, T]; LY(RS; LA(R3)).
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we have by (5.2.2),

d f () gdxdv= f QU™ ™) By(f™1)g dxdv
dt RG R6

- f V- (B g)dxdv— f @V - V) BF™Ypdxdy
RS R6

where the first term on the right hand side is well defined by Theorem 2.1, be€4use
belongs td_*([0, T] x R3; L1, N H23(R3)). Since the second term vanishes andV, ¢| <
Co¢, we obtain

d f B pdxdv< f QU™ ™ 1B(F* g xdv+ C f B(F™ ) gdxdv
dt R6 R6 RS

For the first term on the right hand side, we have

| Q. ey puirtyadnay

R6

— fRG \f]; ; b(cosg)(f*n’ fn+1’ _ fl‘lfn+l)ﬂs(fn+l)¢
XV V*X o

— LG LS . b(COS@) f*n’(fn+1’ _ fn+1)ﬁs(fn+l)¢

v [ purrhivs [ beosa)(fr - 17)
RSy R$ x$2

=1+1.

From (4.3.2), we have, for anye N,

Il qomixes; ey < 1+ 1V Qs qompes; ey
< 1+ ClIglisorpxes; L2y < 1+ Ceo,

so that the cancellation lemma from [6] implies that

f b(COSH)(f*n/ - f*n) =C fN(t, x, V)dv < C||fn|||_eo([o,T]><R§; uesy) <C,
R, xS%

R}

while Bs(5)s = 28(s) implies that

< cf B(E™Hpdxdv.
R6
On the other hand, by the convexity@fthat is,

Bs(@)(b—a) < p(b) - B(a),
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and the assumption th&” > 0, we get

I =f f b(COSH) f*n'(fn+l’ _ fn+1),85(fn+1)¢
RSy JRE xS2

< [ [, pecosaytr(pm ) - pemrh)o
R§y JRE, xS2

< [ [, pleosa)(fa(im ) - tp( s
RSy JRE, xs2

- [ [, breosprmi(e - 1)
RSy JRE, xs2

< f f b(coss) fB(F™)(¢' — ¢) + C f B(F™ ) gdxdv
RS, JRI, x52 RS

=l1+15.

Applying Taylor’s formula to the first term gives

1
I = j; dr fR . fR - b(cosh) f"B(f™1) (V - V) - Vv¢(v+ (v - v))),

Since

(5.2.3) V' — V] =|v-v]sin (g) < (V) (Vi) sin (g)

by settingv, =v+7(V -Vv),0<7t<1,0< 0 < x/2, we have

6 V2
V< Vel + 1V =V < Vel 80 (S )M+ Val) < Vel =V + [Vl

Then

L+ X7+ MP) < C(L+ X% + V)L + Ivl?),
which implies
(V,)®

vy

Vv (%, Vo)l < (1+ X7 + e [) 2 < Ch(x, V)
So we obtain
1] < CllLoo, Txre: LI(R3) fRGﬁ(fMleXdV
Again from (4.3.2), we have, for anye N,

1/2 1/2
1Mo sy < I lliaces) + G e qormies: sy < C(L+ o).

Finally, we have obtained, for@t < T,
G [t eaxavsc [ pihodxdy B i =0
Therefore, for O< t < T, and by continuity,
fReﬁ(f"”(t))qﬁdxdv: 0

which implies that,f™(t, x,v) > 0 for (t,x,v) € [0,T] x RS,. Therefore, the proof of
Theorem 5.4 is completed. O



36 R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

Remark 5.5. Note that the above analysis can be extended to the strong singularity case.
Indeed, by writing

1= f f b(cost) f"B(f™1) (V' = V) - Vyg(V)
RE, JES,x82

1
N f dr f f b(coss) fB(F™) (v = v)* Vig(v+7(v - V)))
2Jo  Jrg, Jrgxez
=11+ l1p,

since we have
(v,)®
w2’

IV2p(%, Vi)l < (L + X2 + [ve[?) % < Cop(x, V)

it follows from(5.2.3)that

12l < ClFllLs o, Tixe3: L) fRGﬁ(f"ﬂ)d)dxdv

On the other hand, setting= ~—= and writing

V=V, |
V —v= %lv—v*l(o-— (o k)k) + %((0’- k) — 1)(v—V.),

we have

=5 [ [ beoss)im(i) (cosh— Hv-v.)- V()
RSy JRE, x52

where we have used the symmetry tjgglb(o“ k)(o-— (o- k)k)d(r = 0. Therefore, we have

11l < CIF L o, Tixe3: L) fRSB(f“H)qﬁdxd\g

and the same estimation holds also in the strong singularity case.

6. FULL REGULARITY

We now prove the smoothnesfext of the Cauchy problem for the non-cfitBoltz-
mann equation. More precisely, the main result of this section is given by

Theorem 6.1. Assume thab < s < 1/2. There exists; > 0 such that if g € H3(R®)
with gt + i*'?go 2 0, lIgollizes) < €1, and ge L=([0, T]; H3(R®)) is the solution of Cauchy
problem (1.3), then we haveegC*>(]0, T[xR®).

Let us recall that¥(R/, ), HX(RS ,) andH¥(R3) denote some weighted Sobolev spaces
with the weight defined in the variable Since the regularity result to be proved is local

in space and time, for convenience, we define the corresponding local version of weighted
Sobolev spaces. For9T; < T, < +o0, and any given open domaid c R, define

%m(]Tl» TZ[XQ X R\s;) = {f € D’(]Tl, TZ[XQ % Rs),
AOW0OT € HIEY). Vo € G5 (0T Tal). w € C(@) ).

The proof of Theorem 6.1 will be divided into several steps.
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6.1. Formulation of the problem. First of all, we recall the main result in [12] given
below.

Theorem 6.2. Assume thaD < s < 1, 0 < Ty < T, < +o0, Q c R3is an open
domain. Let f be a non-negative solution of the Boltzmann equation (1.1) satisfying
fe fo(]Tl, T,o[xQ x R3) for all £ € N. Moreover, assume that f satisfies the non-vacuum
condition

(6.1.1) 1t X, )2z > O,
for all (t, x) €]T1, To[xQ. Then we have

f e H*(T1, T2[xQ x R3) € C*(| Ty, To[xQ x RY),
forany¢ € N.

To apply this result, let us firstly note that, by Theorem 4.3 and Theorem 5.4, under the
assumption of Theorem 6.1, the unique solution of the Cauchy problem (1.3) satisfies
190, 77; M3 < €o- u+ \ug=0.
Therefore,f = u+ g > Ois a solution of Boltzmann equation (1.1). On the other hand,
we can choose, > 0 small enough such that
I Vil o, myxrs: 11wy < ClldllLsqo, 1; Hewey) < Ceo < 1

whereC is the Sobolev constant of the imbeddidg(R?) c L*(R3). Thus, for any{, x) €
10, T[xRS,

(6.1.2) JfExvdv=1+ f3 Vi 9t X, V)av > 1= [ v Gll o yxeg; Lz > O
RY Ry

so thatf = u + +/ju g satisfies the condition (6.1.1).
By using equation (1.1) and Remark 4.4, we have also, forani{, 0 < T; < To < T
and bounded open domaihc R,

f=u+ Vuge H(T, To[xQ x R).

Note that we can not apply directly Theorem 6.2 because we now only knows Heest
regularity just ian’(]Tl, To[xQxR3). To overcome this, we prove the following theorem.

Theorem 6.3. Under the assumptions of Theorem 6.1, we have, foBayl; < T, < T
and bounded open domath c R,

f=p+ vEge H(T1, TAxQ xRY),
holds for all£ € N.

The proof of this theorem is similar but easier than that of Theorem 6.2 which was
proved in [12]. In fact, since we have

g" > g

by mollifying the initial data and using the unigueness of solution, we do not need at all to
mollify the solution as in [12]. It follows that to obtain the above regularization result, we
only need to prove tha priori estimate on smooth solution, which can deduced from [12].

To make the paper self-contained, we give a proof here. Let us recall that here we
consider the Maxwellian molecule type cross-sections with the mild singularity.

Here and belowp denotes a cutbfunction satisfyings € C3 and 0< ¢ < 1. Notation
¢1 CC ¢, stands for two cutd functions such that, = 1 on the support a,.
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Take the smooth cufbfunctionse, ¢z, ¢3 € CP(1T1, T2)) andy, v, ¥3 € C5'(Q) such
that(p CC o CC @3 andw CC Yo CC Y3. Setf; = (p(t)l//(X)f, fo = (pz(t)l/lz(X)f and
f3 = pa(ya(X) f. Fora € N8, |a| < 3, define

g = (e ) € L>(T1, Tof; LE(R®)).
Then the Leibniz formula yields the following equation :

(6.1.3) G+V-0g=Q(f2, 9 +G, (txV)eR’,
where
(6.1.4) G = CorQ(a™ fz, 0°211)

a1+az=a, 1<|oq|

()T +V - ux(e® ) + 07, v - a(ew (X))
= A+B+C.

Then we can tak@/?’ g as a test function for equation (6.1.3). It follows by integration by
parts onR’” = R{ x RS x R3 that

0= (W' Q(fz,9). W' g) L2y

which is suficient for obtaining the required initial regularity.

+

ey T (G’ w g)

6.2. Gain of regularity in velocity variable. The next step is to show the gain of regu-
larity in the velocity variable by using the coercivity of the collision operator.

Proposition 6.4. Under the assumption of Theorem 6.1, for any T; < T, < T and
bounded open domai@ c R, one has,

Ajh € L2 (Re; HE(R®)),
forany¢ € N, whereA, = (1 - AV)%, f1 = o)y (X) f withp € C3(IT1, T2[), ¥ € C*(Q).
Proof. Firstly, the local positive lower bound (6.1.2) implies that

inf fo(t, X, - =co > 0.
(t,x)eSupmxSupml|I 2(t %, lLygs) = Co

Thus, the coercivity estimate (2.1.1) gives

—(Q(f,, W g), W =—f f fo, Wi g), W¢ dxdt
(W' g)U(R’) teSUpPpe JxeSUpp (Qf Wo) g)LZ(M

4 2 t 2
2 | [ (CoIwe ot x gy = Ot x IV Bt % s

> Col AJW gllf2(z7y = CTlFallLoes; syl W O o 1. L2sy-
Since
I fallLees ; ez < Clifall ooy H32re(6))>
and

W gll2.. ClIfylI?

([0,T]; L2(rS)) < L([0.T]; H3(RS))*

forl > 3/2, we have

(6.21)  IAW GGy < Cllfallfgory pssy + (G W Q)]

+(W Q(f2,9) - Qf2. W' @), W' g) 201
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By applying Lemma 3.2, the third term on the right hand side of (6.2.1) can be estimated
as follows:

(W QUF2, @) - Q(F, W' g)), W g)
< CTlfall o1y nazre @)l qo.ry; 2oy 19z

L2(R7)

2 2
<CT ” f2||Loe([0,T]; Hfﬁ*‘(RG))” fllle([O,T]; H?(RG))'

For the second term in (6.2.1), we shall prove the following claim:
ForO< s< 1/2,0ne has

(6.2.2) |(G, w2 g)

< (1l fallis oy, weey + 1HalfPo 1y, oy AW Gy, -

L2R7)| —
In fact, recalling the expression (6.1.4), it is easy to get
IIBIILZ(R7) + ||C||L2(R7) < CTIIfalle ([0.T]; H2,(BS)"

For the termA, firstly recall thate; + a2 = a, |a| < 3 and|a,| < 2. In the following, we
will apply Theorem 2.1 withm = —s. We separate the discussion Aiinto two cases.
Case 1.If |ay| = 1, we have

f f Q™ fo, % F)(t, X, P el

Ry

C [ 107 falt kB, B e
Ry JR3 +

a1 2 a2
CI0™ 1o . [ 1765yt

CTIIflf?

IA

IA

IA

|| 412
= ([0,T]; H2 5®E)! Lo (q0,T]; HE, (S)"
Case 2.If |ay| > 2, then|ay| < 1, it follows that

L L3 ”601 f2(t9 Xs )“El (R3)”6(lz fl(t X )“HS (R3)dth
t X

2 2 @1
< GOl o Ms(Ré»f f 67 82t X Ty eyt
2 2
S CT” fl”L‘”([O T] H1+3/Z+E(R6))|| f2|| oo([O,T]; H?+3(R6))'

(+2s

By combining these two cases, we have
(6. wg)

2 2 S
L2(R) < CT(” fz”Loo([O!T]; H[3,+1(]R6)) + ||f2||Loo([0’T]; H[3+3(R6))”AVW€ g”LZ(RZX’V))'
Therefore, we obtain

4

IASWY 02z zry < C(1+ Il fallioqoy: macesy) -
The proof of the proposition is then completed. O
6.3. Gain of regularity in space variable. With the gain of regularity in the variable
given in the above subsection, we now want to prove the gain of regularity in the variable
x. Here, the hypo-elliptic nature of the equation will be used.

For this purpose, we introduce a more general framework. First of all, let us consider a
transport equation in the form of

(6.3.1) fo+v-Vyf =ge D'R),
where (, x,v) e R’.
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In [9], by using a generalized uncertainty principle, we proved the following hypo-
elliptic estimate.

Lemma 6.5. Assume that g H=S (R"), for some0 < ' < 1. Let f € L2(R’) be a weak
solution of the transport equation (6.3.1), such tgtf € L?(R7) for some0 < s < 1.
Then it follows that

Axs(l—s’)/(s+l)f c ng(R7), Ats(l—S')/(S+l)f c LE%(R7),
s+1 St

whereA, = (1 - A,)Y2,

Of courseg is typically linked with the Boltzmann collision operator. Through the
above uncertainty principle, we have the following result on the gain of regularity in the
variablex

Proposition 6.6. Under the hypothesis of Theorem 6.1, one has

(6.3.2) AP f1 € L3Ry, HE(R®)),

foranyf e Nand0 < s = 5((;‘15)).

Proof. For any¢ e N, it follows from Proposition 6.4 thataSW‘g € L?(R”), while using
the upper bound estimation given by Theorem 2.1 with —s, we get

WQ(f2, ) € LARE,: HT*(RY)).
On the other hand, (6.2.2) gives
W'G € LA(R¢,; HTS(RD)).
By using equation (6.1.3), it follows that
B(Wig) +V - ax(Wig) = WQ(f2, g) + WG € H™3(R).

Finally, by using Lemma 6.5 wit’ = s, we can conclude (6.3.2) and this completes the
proof of the proposition. O

Therefore, under the hypothedis L*([0, T]; H3(R®)) for all ¢ € N, it follows that for
any¢ € N we have

(6.33)  AJetWw()f) € LR HER®),  AR((W()f) € L2(Re; H(R®).

We now improve this partial regularity in the variabte Since fractional derivatives
will be involved, it is not surprising that a Leibniz type formula for fractional derivatives in
the variablex is needed. We shall use the following one, taken from [12]. LetD< 1.
Then there exists a positive const@nt+ 0 such that

(6.3.4) IDL'Q(f, g) = Q(D«'f, g) + Q(f, IDxI'g)
C h|=34 fh, dh,
+ zﬁsl 7" Q(fn, Gh)

with
fa(t,x, V) = f(t,x,v) - f(t,x+h,v), heR3.

With this preparation, we need a preliminary step, given by



THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF 41

Proposition 6.7. Let0 < A < 1and f e L=([0, T]; H2(R®)) be a solution of (1.1). Assume
that, for all £ € N, we have

ASTL e HART), AlfieHXR).
Then, one has for anfe N,
IATAS Filli e iy < Clllliso,ry; e, ey
X (IlA\SIfl||H{3+25(R7) + ”A;l( fl||Hl§+25(R7)) ’

Proof. Setg = 8%, f1 anda € N°,|a| < 3. We choosaV’ |Dy|! ¢5(X) IDx* W’ g as a test
function for equation (6.1.3). Then

((v - 3xp2(0)IDK W g, 42(X) 1D W' g)
=(42(9 D' W Q(f2. 9). w2(X) IDA' W g) ,
+ (w20 IDA' W' G, y2(X) ID4I' W' g)

L2R7)

L2(R7)"
One has

(v - Ba()ID W g, wa(x) 1D W 9). 2o,
and the same estimation for the linear ternGah (6.1.4)
(6209ID W (B+©). w209 1D W),

For the nonlinear terms @ in (6.1.4), we shall use the Leibniz formula (6.3.4). First of
all, the coercivity estimate (2.1.1) gives, as in (6.2.1),

~(Qf2, Y2()ID'W’ g). w2(x)IDA'W ),

> Coll AJ2(X) D' W' gl 2zry = CTl 2l Lageay W20 IDX WO Gl 0.1y, L2gesy
On the other hand, the upper bound estimate of Theorem 2.Inwith-s gives,
(QUDA . w2 (W' ). w2(QID'W' ) , .
CllIDA* falls s, La ey 200 AW Gl ey 20 DX AQWF gl 2y
Cllf2ll e oy, 132022 oy 200 AW Dl 5y 92D AQW' Gl z¢er)

Sllr2(QIDI AYW' GilZ 57, + CsllFal?

< Cl| Ayd” f1||Lf+1(R7) )

< C|| Agd” fillz @) -

A IA

IA

SH(12
m([O‘T]; HS(RS)) | IAvg”LiZS(ﬂy) .
For the cross term coming from the decomposition (6.3.4), by using again Theorem 2.1
with m= —s, we get

LI (@ctn. W @i v209Dnwg)
R
< [CAlll2(X) DL ASW Gl ez
X f NIl L @ap 1AW Qnllig ey dh
N ,

< Sl (DK AW Gl ey + Coll Fall?

dh|

L2(R7)

w([OVT]; Hg(RG))||A€g||if+ZS(R7)'
Hence, we have
(DA QU 2, w2(YW G) = QDK o, Y2(YW G), $2(X)IDx* W g)

< Slly2(IDK AW Gl g7y + Coll Tl

L2(R7)

SHI12
wqory meesy VIl ey
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In conclusion, we get

2 (QID AW glIE 27y

2 2 2
S C||f2|| oo([O’T]; Hg(RG))(” |DX|/19”L§+ZS(R7) + ||A39||L?+25(R7))
+ [P (W o, @) - QT W' g)), wE(IDA W )
+|(IDxWE A gBIDA W ),

I+ 1+

For the term I, again, formula (6.3.4) yields,
(IO (W' Q(f2. @) = Q(f2. W' @), w3(9ID'W ) ,
= (W’ QUDy"f2. @) — QDK 2, W' g)). ¢3(XIDLI'W! g)
+((W' Q(fz, IDi'g) — Q(f2, W' IDyI'g)), ¥3()ID'W' g)

L2(r7)
L2(®7)
+C1 [ IO QU @) = QFan, W ah). WE9ID'WFg)

L2RY)

Since O< s< 1/2, Lemma 3.2 implies

(W QUDA 2, @) - QUDA o, WE @), 2()IDL W g)

<Cll |Dx|/I f2||L°°(Rﬁx, Lg(Rg))Ilglle(R;{x, L?(R?,))” |Dx|/lg|||_l%(R7)

L2(R7)

< C” f2|||_oa([o,'|']; H;ﬁ;;:;(Re))||g|||_g(R3)|| |Dx|/lg||L[%(]R7)7
and

(W Q(f2, ID'g) - Q(fz. WEID,H'g)). w3(9IDLW- g)

<Cl f2|||_w(R;}x, L}(Rg))|||Dx|Ag||L2(R;}X, Lg(Rg))” |Dx|/lg|||_§(R7)

L2(R7)

< Cllfale o1y vtz ropllIDxl Al o -

{+3/2+€

For the cross term,

| f IR QU @) = QT W ah). w300IDA' W g),, .

L2(R7)

< C” f2|||_oo([o’T]; H1+3/2+5(R6))”g||L§(R3)” |Dxlﬂg”Lf(R7)~

(+3/2+€

Thus, we have
1< Cllfall» go.1y; 3o 11D Al sy

+2

We now consider the last terhhl . Recall thatA stands for the nonlinear terms fra@n

A= > CuQ(amf, 9mh)

aj+az=a a1#0
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We have
(1D (QUa™ f2, 67 11)), W' yZ()IDA W' )
< ClIASY1(X)IDx "W gl 2(z7yX
X {|QUD T o 0 £0)| e ey + 1RO o D™ )] et ey

+| f QU™ (fa)ne 92 (FNAN s im ey -

l+h/2

L2(R7)

We divide the discussion into two cases.
Case l.|a;| = 1 (then|ay| < 2). Applying (2.1.2) withm = —s. We have

|Q(IDAt07 1, 572 11)

L2(R{,H; @)

tx: ! g

< Cll AR FallLagr; Lozt e VO™ FallLo e L2, )

(+2s +2s
A S
< Cll A Tallygzre @l llyz ey

(0 f2, 1Du1"52 1)

< Cllo™ f2||L°°(R§X;L}+23(R§))|| A\?Aiaaz f1||'-?+zs(R7)

L2®{GH (&)

S
< Cllfallue oy ez o lIAv llg e

and

| [, Qoo =(ran)an

L2(RE,GHSRY)
<C f A= 010 (Fanll e, L, @l AV (fnllz, zrydh
< Cllo™ fall o ga 2, w3yl AJ0"?Vxalliz | gy

S
< C” f2|||_oo([0!-|-]; Hglg//g:;zS(RG))”AV fllle+25(R7) .

Case 2.|a;| > 2. By the same argument as above, one has

(iAo 1, 972 1,)

+ Qe f2, DA 1)

L2(R{,H; @)

txiHz L2(REGH *®D)

< Cllfallwqory o2 oy(IASTallu ) + 1A% Fills @) -

(+3/2+€+25S (+2:

When|a1| = 2, we have

| [, et #=(ran)an

L2(Rf; H73(RT)

(+2s) (+2s

Scf 10" (Rl coges 2 mam | VO (Pl (o312,

< ClI V0™ falloey (2@ 2, mamll AVO™ Fallio, (Lee3; 2, 22
< Clifallis oy 2 o . oueonll AV il ),

43
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while when|a,| = |a| = 3, we have

” fR h2 Q@ (fa)n, (f1)n)dh

L2(R{H 5 (RD)

X =(+2s X! =0+2s

SCf|h|_3_/l||aa(f2)h“L2(R4 1 el AVFDRllLo@s 12 @3ydh

< ClIO" fallas, 12, @anll AWV xFallio@e 12, @)

X1 —(+2s

2
< C” f2||Loo([0’T]; H[3'+3/2+e+25(R6)).

Thus, by the Cauchy-Schwarz inequality, we obtain

< SlIASY1 (XD W glI2, 7, + Csll fall?

2&Y IASFLIZs o +IAXTIZ: o))-

~(0.T%; Hia(RG))( HZ, 25(®7) H 2s(®7)

Finally, we get
IASY10YIDL W G2 ey < Call fllZ o 1y e oy (IASFilBe_ory + MG o)),
and the proof of the proposition is completed. O
We are now ready to show that the gain of at least order 1 regularity in the vaxiable
Proposition 6.8. Under the hypothesis of Theorem 6.1, one has
(6.3.5) A (e (x)f) € HER),
for any¢ € N and some > 0.

Proof. By fixing s = A9 then (6.3.3) and Proposition 6.7 with= 59 imply

= T
ASAPg e H3R).
It follows that,
(ARG +V - 0x(ARG) = APQ(f2, ) + ARG € H,(R).
By applying Lemma 6.5 witls' = s, we can deduce that
A (e (0 ) € HER),

forany¢ € N. If 25y < 1, by using again Proposition 6.7 with= 25y and Lemma 6.5
with 8" = s, we have

ASe®u() ), AR (eOU()T) € HIRT) = AFP(etuw(x)f) € HIR).
Choosekg € N such that
koo < 1, Ko+1sp=1+e>1

Finally, (6.3.5) follows from Proposition 6.7 with = koS by induction. And this com-
pletes the proof of the proposition. O

6.4. Higher order regularity. The proof of Theorem 6.3 will now be concluded with the
above preparation.
From Proposition 6.4, Proposition 6.8 and equation (1.1), it follows that for &,

A ®U()F),  Vx(@®w(f) € HIRY).

This fact will be used to show higher order regularity in the variablgy using the
following
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Proposition 6.9. Let0 < A4 < 1. Assume that, for any cyfdunctionsp € C3(JT1, T2[), ¥ €
Cy(@)andallf e N,

AG OUI), V(e f) € HAR).
Then, for any cut@ifunction and any € N,
AT (e () € HR).

For the proof, we choose/’ A24 W' g as a test function for (6.1.3), and then proceed as
in the proof of Proposition 6.7. The onlyftBrence is in the estimation on the commutator
with the convection:

(A, V1 - W g, ALW g)

L] < CIAY iz IV dllzgery,

since
[AL, V] - 0x = AAT2 0, - Oy,

andA{~? g, are bounded operators irf. This is the reason why we need in the first step
the gain of the regularity of order 1 in the varialle

To complete the proof of the full regularization result, firstly, exactly as Proposition
6.3.5, we can get

AT (w9 f) € HER),

for any¢ € N and some: > 0.

Therefore, we obtain that there exisgts> 0 such that for any € N, and any cutfi
functionse(t) andy(X),

eOY()f € H(R).

Notice that the estimate in Proposition 6.7 can be modified as follows. In fact, we can
obtain

IATAY full 2, Ha@sy) < Cllfallysre gy
X (1A Fallys ey + IAK Fallge ) -
By using this, the proof of
fe HI (T, ToAXQXRY), VEeN = fe H (T, T [xQxR3), V€N,
is direct and this completes the proof of Theorem 6.3 by the bootstrapping argument.

7. GLOBAL EXISTENCE

We shall establish a global energy estimate for the Cauchy problem (1.3). For ease of
exposition, and unless necessary, generic constants will be dropped out from the estimates
in this section. Finally, all in all, we shall follow and adapt the method initiated by Guo
[46] on the estimation on the macroscopic components. Here we point out that his method
works also for the non-cutbcase but only when the estimations of the nonlinear and
related terms are carried out in terms of the non-isotorpic norms (2.2.1). We also note that
his method has been generalized to various directions. Among them, a few are the external
force case [35, 37], the Vlassov-Maxwell-Boltzmann equation [65], the soft potential case
[66, 74] and the Landau equation [45, 74]. Independently of his method which is based
on the macro-micro decomposition near a global Maxwellian, the energy method based on
the macro-micro decomposition around a local Maxwellian has also been developed with
application to the classical fluid dynamical equations [52, 53, 54]. Further references are
found in these paper.
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Introduce the macro-micro decomposition near the absolute Maxwetlian
g=Pg+(-P)g=g1+Q, Pg=g1=(a+b-v+cov)u?
In this section, the following result on the energy estimate will be proved.

Theorem 7.1. For N,¢ > 3, let T > 0 and suppose that g is a classical solution to the
Cauchy problenf1.3)on [0, T]. There exist constantsdyM; > 0 such that if

<
(th%( &(1) < Mo,

then g enjoys the estimate
t
E(t) + f D(r)dr < M1E(0),

0

forany te [0, T], where
— 1gl12 2 2
8 - ”g”H;\‘(RG) ~ ||(a$ b’ C)||HN(R§) + ||92||H;V(Re),
is the instant energy functional, and
D = [[Vx(@. b, )lF-1eg) + 192l

the total dissipation rate.

The proof of this theorem is divided into two parts, that is, the estimation on the macro-
scopic component and the microscopic component respectively.

7.1. Macroscopic Energy Estimate. By the macro-micro decomposition, the equation in
(1.3) is reduced to

dfarb v+ vt +v- Via+ b v+ MPclut?

=—(0y+V- V)02 + L2 +1(9,0).

Using

v-Vyb-v= Z ViVjaibj = Zvizaibi + Z ViVj((')ibj + ajbi),

i, i i>]

we deduce

0} Vi|V|2/~ll/2 : Vi€ = —0irc+lc+he,

(II) Viz/,tl/2 . 0C + oib = -0t + li + hj,
(7.1.1) (III) ViVj,ul/2 . 6ibj +6,-bi = —atrij + Iij + hij, i # j,

(iV) Vi,ul/2 . obi + dia = —0irpi + lpi + hyi,

(v) w2 8 = —0ifa+la+ ha,
where

r= (92’ e)Lg’ | = _(V - VxQ2 + -[:ng e)LS’ h= (r(g’ g)’ e)LZ(R§)9

stand forrg, - - - , hg, while

e € spanviVu?, Vet ? viviu 2 vip?, ity
Lemma 7.2. Letd” = 6%, @ € N3, o] < mm > 3. Then,

ll6* (a, b, C)2|||_2(R§) < IVx(@ b, )llpmaeg)li(@, b, O)llym1(gg)-
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Proof. Letk = |a|. Then, one has fdt = 0 that
ll(a, b, C)2|||_2(R§) < I(a b, Ollisry)ll(@ b, O)llLsrs) < IVx(@, b, O)ll 23 ll(@ b, O)llzs)s

since

llabil 2y < llall s Ibllsez) < IVx@llEalIBIS o IBIZE . < 11Vl 2z blles)-

Lo@HTILRY T

Also fork = 1, we have
(8, b, ©)?ll 23 < lI(a, b, ©)d(a, b, Ol 2w < II(@ b, OllL~z)lIVx(@ b, Ol 2z
< l(a, b, C)||Hm—1(]R§)||Vx(a» b, C)||L2(R§),
and for 2< k< m,
16" (8, b, ©)llzqegy < D 116 (2, b, K™ (8, b, Ollegesy

k
r< K
k<X

< ) 1185 (@0, )l gy 657 (b, ©)llLzgeg) < 1R B, Ol 1z IV (@ B, O)lly-se)-

And this completes the proof of the lemma.

Lemma 7.3. (Estimate ofr, I, h).
Leto” = 8%, 0i = dx. lal < N—-1,N > 3. Then, one has

(7.1.2) ll6;0“r llLogs) + 0"z < l92llun g, L2(r3)) = Aa,
(T13) 10 Nlges < 9@ b Ol 2 @b Oll s

+1(a, b, C)||HN—1(R§)||92||HN—1(R§, L2r3y) T ||92||2HN_1(R§, L2(r3) = A

Proof. (7.1.2) follows from
10i0°T Il 2rz) < (010 G2, €)1 2(r3)llLewz) < 100" Pl 2(re )
and
1612 < (V0" T2, VE) 2r3) + (072, L7€)2m3)llLe@e) < 105 P2llhi(rs, L2z3))-
We prove (7.1.3) as follows.

— 12+  _
n= [[[ bteosni g - g.g)edvavar
= f f b(cost)gg.((u*?).€ - ui'?e)dvdv.der
= [[] oot 2a . (atv) - a@)aveuelr

2

2
= 0(g,0) = ), ¥(g,g) = ) W,

i,j=1 i,j=1
whereq = g(v) is some polynomial of. Firstly, we have
o = Z nin@ i, Y.
nj.1ketab,cl

whereyj(v) € N. Clearly,|®(y, x| < oo, so that by virtue of Lemma 7.2,
16" @ zeg) < 1167 (@, b. )2y < 1Vx(@ B Ollun-zgagll(@ b Olln-seg)-

47
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On the other hand,
I0(9, Fllzes) < el eaiaEaple? Fllzesiesy < I9zee ) fllzes,)
which yields forja| < N - 1,
16 Dl 2(g3) < 1107 (8, B, O)llLz(esy10° Gallzqes,y < 1@ B, O)llkn-reg) IGlln-rges Losys
16 Pl oeg) < 1107 Galliz(es,)10% (@ b, O)llzqes) < IG2llnn-ses.zqeay i@ b Ol -1z
10° DE N 2ez) < 110" GlPoes ) < 192IEn 1ca5 12e5)
Now the proof of (7.1.3) is completed.

Lemma 7.4. (Macro-energy estimate)Let|a| < N — 1.
d Y C
(7-1-4) ||ana(as b, C)”ﬁz(Rg) < —d—t{(a"r,vxa"(a, -b, C))LZ(RQ) + (3( b, anla)Lz(Ri)}

+ 192l s 1 2egy + D161
where
D1 = [1Vx(@, b, Ol ageg) + 182lFines 2(ey
is a dissipation rate and

&1 = @b, Ol sy + 192l s 1 2gasyy = 19 12312

is an instant energy functional.

Proof. (a) Estimate oV49%a. Let A, A; be as in Lemma 7.3. From (7.1.1) (iv),
V30 allf 53y = (Vx0@, Vx0" @) 2e)
= (0"(=0ib = Or +1 + ), V43"@) 2(z3)

< Ry +Cy(AT + AY) + 11l V0" Al s

Rl = —(8"8tb + 8‘16tr, anna)Lz(Rg)
d
= = (0" 0+ 1), V20" A 2z + (V0" (0 + 1), 89" ) ey

d
< = ;" (0+ 1), V208 2z + CylIV0" bl gy + AD) + 100" allEz g,
(b) Estimate oWV ,0*b. From (7.1.1) (iii) and (ii),

Axa”bi + 6?6”bi = Zajad(ajbi + aibj) + 3i60(25ibi - Z@ibj)

j# j#i
= 3;0°(—0r +1 + h),
V"B ) + 10107 DI, g5 = —(Axd"bi + G701, D) 2es) = Re + Re + R,

where

d
R2 = (atﬁwl’, 6iaab)|_2(R§) = d_t(aar,aiaab)LZ(Rg) + ((9i(3“r,6t6”b)Lz(R§)

d
< 507, 010" D)oy + CoAL + Ml BlEz g,
Rs = —(8"1,0i0"0) 23 < C,AL + n||aia“b||ﬁ2(R§),

Ry = —(0", 8i0"0) 2z < C,A5 + n||aia“b||fz(R§).
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(c) Estimate oWV ,9%c. From (7.1.1) (i),

||vxa”c||fz(R§) = (Vx0°C, Vxd"C) 23y = (8°(=0ir + 1 + h), V0% C) 2e2)
< Rs + Cy(A] + AD) +11lIV50"CllE s,

where
d
RS = —(aaatr, VXa&C)LZ(Ri) = —&(3%, anaC)Lz(Rﬁ) + (anal’, 6taaC)|_2(R§)

d
< =i 0T V0" OLageg) + CoAL + 00" Al o),
(d) Estimate 0b;0*(a, b, ¢).
(7.1.5) 10:0” (8, b, O)ll 2(s2) = 10" 3Pl 2gs,

= 10"P( = V- Vxg - L9+ (G, 9))l 2z,
= 0"P(V - Vs@)lli2(es,) < IVx0" (@ b, Olleeg) + IVx3" Gl zqes,)-

Combining all the above estimates and taking O suficiently small, we deduce

d
||an(t(av b’ C)”iZ(Ri) S _d_t{(aar, ana(a, —b, C))LZ(R,S‘() + ((9” b, anaa)LZ(Ri)}
+ AL+ A4 IV Gl
Finally, choosinda| < N — 1, and using Lemma (7.3), we obtain
AL+ AS + IV GllFr s ) < D181 +1lIG2lF 2y

which completes the proof of Lemma 7.1.4. O

7.2. Microscopic Energy Estimate. In this subsection, We shall use Lemma 2.6 and
Proposition 3.5 to estimate the microscopic component.
Step 1.Leta € N3, |o| < N, and applyg® = 62 to (1.3) to have,

0(079) + V- Vx(9"9) + L(8"9) = °T(9, 9),
and take the-2(RS,) inner product withgg. By Lemma 2.6, we have

1d

(7.2.1) > gl Az, + D1< 3

whereD; is a dissipation rate

— o 2 _ @ 2
Dy = fR 110" GallPdx = 116 Gal g

andJ is given by

2
J = (0"T(Q. 9), 0"Q)L2rs) = Z(aar(gi, gj), 0 G2)L2(rs)

ij=1
2
= ) g,
i,j=1
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First, consided®d. We have, withy; € N,
(7.2.2) 13V < 10°T (91, G0)llizqes) 10 Gallizqes)
< N(16°T (91, 9)llLzqesy )l llo” Gallioges),
16°T( Olley < D, 10" GrmdlITWs, vdllees,

nj.1kElab,ch

INGRDI P f(ffb(cos@)ui/z{(wj)llﬁ’k—(tﬁj)*wk}dv*dcr)zdv

2
= [l [ [ bteosaei(pi):pi - (py)-padv.cer) v <
wherep; € {1,v, IV?}. Consequently, by virtue of Lemma 7.2,
130D] < [16% (@, b, ©)?l 2 16” GallL2¢es)
< IVx(@, b, O)llun-2z3)ll(@, b, O)llun-1(r2) 182l lyn R L2(r2)
< 11(@. b )l sy (1953 Bl O 2y + el o)
On the other hand, using Proposition 3.5 gives
1399 < 1igallp s g2 lllgy s g2 lllgyes)
< l1(@. 0. )l NGl es)-
13@V] < gl ey 191 lllg ey gl gy ey
< ||92||Hg(R6)||(& B, O)llkn(ez) 192llly (ge)»
132) < lIgallpg o gl gy ey lIgallgy sy
< 92l sy 92150 sy
Taking the summation of (7.2.1) fge| < N,N > 3, we have
Lemma 7.5. Let N> 3. Then,

d
(7.2.3) Gl e Lagey *+ NGl ey < D28,
where
Do = [IVx(@ b, Olfu-ssg) + 1020z ey

&2 = 100 s. Lzqezy ~ 1@ O ey + 192l es 2y

Step 2.Letd” = 32,1 < |a| < N,N > 3, and applyw‘s“ to (1.3). We have
(7.2.4) (WD Q) + V- V4 (WEH7g) + L(W'Dg) = S + So,
where

S1=W'9T(g, 9),  S2=[L W](&9).
Take theL%(RS,) inner product withv/9*g to deduce

1d
> gV 0" llEzes) + D2 < G,
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whereD; is a dissipation rate

D, = f 1 - PW o gl
R

1 2 2
2 S0 Gl es) = (1Vx( b, Olls-s(a) + 1020 ez L2(e)
Here we have used for4 || < N,

fR PW o glli*dx < 110Gl e,

< 19x(@.b. Ol sy + 192l es L 2gesy)-
On the other hand5 is defined by
G=G1+Gy, Gi= (S, Wd"Q)2ms). i=12
The estimation of5; andG, will be given in the following lemmas.
Lemma 7.6. Let N> 3,¢ > 3. Then, for€ and D defined in Theorem 7.1, we have
Gy < EY%D,
Proof. First, write
Gi= ) (Wo'T(g, ¢;), W Q)zsy = Y G,
i,ji=12 i,j=1,2
Proceeding as in (7.2.2),
(7.2.5) 1G] < [IW8"T(g1, G1)llLz(es) 107Dl zqes)

< (W6 T (g1, G)lliaesy eyl Dllaes).
~ [10°{(a. b, )l 2zy IW2T (W, vl ey 10° Dl ey

R e e e A AN Y
= [w( [ [ orcosmu((p:pi - (p)-pdvcer) dv< .

Since 1< ja| < N,
IGHY] < 1Vx(@, b, )llpn-seg) I (@ b, Olln-reg)
X (IIVx(a, b, O)llyn-1(rzy + 192llHn (3 L2(r3)) -
On the other hand, we have
2 _ 4 2 2
1l ey = fR W Eg1(x, lIPdx < l1(@. b, O)lF y es)-
[BI<N * X
This fact and Proposition 3.5 yield
G <lgallv ey NGlllgy ey W O Gl eey
< lI(a b, Ollneg) NGalllgyze)116° Glllgoges),
IGE) <ligallypeey MGalllgycesy NIW " Glllgggeey
< llgallsyli(@ b, O)llmcezy 110° dlllges).
IGE?) <Iigallyp ey IGallgyces) IIW " Glllgggeey
< ||92||Hp(R6)|||92|||B;‘(R6)|||aag|||f39(R6)-
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Noticing that for 1< |a| < N,
0Oy < [ I3 e | IWo gt P
< IIVx(@ B, OlF s sy + 192lllgnes).
we now conclude the proof of the lemma. O
We shall evaluaté&,. In view of Proposition 3.8,
IG2| < |<[£1,VV[]3”9, W 97 Q) 2z
+|(W L), Warg)

< 167Gl 2y 10° Gl o)
< (IVx(@ b, Ol 13y + 10" Gl 2167 Gl ey
< V(@ B, Ol sy + Colld" Geligusy + 10" QlZogzey. (1> O)

+ (LW o), Warg)

L2(R%) L2(R%)

Thus, we have established

Lemma 7.7. Letl <|a| < N,N > 3. Then,

(7.2.6) d%na"gnﬁg(w) + 16" AlZ0 s,
<EV2D + 10" GallF2 g + V(8 0, Ol s sy
Step 3 .We need also to estimaW’g,. Apply Wi(l — P) to the equation in (1.3) to have
O(W'gp) + V- Vi(W'gp) + LW G2)
= WT(g, g) + W[V- Vx, Plg+[£, W]g,.
And then take the inner product with‘g, to get
dﬂt||wfg2||i2(Re) +D3 < H,

where

Ds = fR 111 -~ PIW gl dlx

= %|||gz|||;9(R6) = Cligzllio),
while
H =Hi + H, + Hg,
Hy = (W'T(g. 9), W g2) 2(rs).
Hz = (W[V- Vy, P1g, W G2) 2(rs).
Hz = ([£, Wg2, W g2) 2(zs).

Hl - Z(Wr(gl’ gj)7W[gz)|_2(Re) = Z H:E_Ij)

ihj=2 i,j=2
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Proceeding as in (7.2.5),
IHAY) < IWZT(g1. 9)llizqes) 2l zs)
< I(IWPT (g1, g0l )z 192l L2ges)
~ 118, b, ©)ll ey WP T (W, vl 2oy Gl Lo eo)-

||W2[F(lﬁja’ﬁk)”iz(R3) = f (WZ" f f b(COSH),ui/Z{(wj);tM(—(wj)*zpk}dv*dO')de
_ f W f f b(COS. (1), Pk — (Py). Pldvider) v < oo,

Then we have, by using Lemma 7.2,
IHOD] < V(2. b, ©)ll 2 I8 b, ©)lls e IG2ll2ze)-
On the other hand, we have
2 _ 2 2
92 1150ce) = fR W ga(x, IIPAX < (3, b, Ol 5s-
This fact and Proposition 3.5 yield
IHE2) <lgallp ey Ng2lllgygasy IW Galllgoes)
< @ 0. )llrmeg) NGl es)-
IHED) <Gl ey Nanlllygesy IW Galllgoes)
< 1IGa Il 1@ b, O)linnes) 192llg e
I <Gl ey Nglllygesy IW Gallgoes)
< 1192l e 1925 ey
And H is evaluated as follows
IHal < [((W2[v+ Vy, P10, 02)i2ze)] < [IVxGllLzqes)lIG2ll zqes)
< IVe(@ b, OllFagzs) + 192017 e 2z
Finally, in view of Proposition 3.8,
IHs| < ‘([Ll,W[]gz, WiG2) 2(z)
+ (W £2(g2), W)

< 1192l z2(re) G2l gors) -

+ ‘(Lz(VVfgz), W'gs)

L2(R®) L2(R®)

Since it holds by interpolation inequality that

(7.27)  ligellzes) < Mligellz ee + Cyllgallizgs) < nlgllas +Cllgzllis.

for any small enough > 0, we have established

Lemma 7.8.
d
(7.2.8) i1z ) + 1Gall50(ee)
<EV2D + 1G22 ze) + V(@ b, Ol .



54 R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

Step 4 .Let

F=8,=00, "=, & =4, Bl =lal+ Iyl <N,y #0, N> 3,

and applyWW @ (I — P) to (7.2.4) to have
(W'D g2) + V- V(W P gp) + LW P gp)

=W!T(g, g) + [V- Vyx, WFlg,
- WP, v-V]g

+[L, WPlgo + WP(0; + V- Vy)0r.

And then take th&%(RS, ) inner product with\V/#g; to get

5 g1l s, + Da < K.

HereD, is a dissipation rate given by

D4 = f 1t - PW gl P
R
1 [es
2 S0 Galllgo ey = ClIO" Pz ey

where we used, witly e N andy = (-1)"97 (W y),

IPW S gall? = 16 (¢, WS Qo) Loyl = 10, 8 G2z sy 1WA < 1107 Gl s
On the other hand is given by

K =(W'éT'(g, 9), W' 0p) 2(ze)
+([V+ Vi, W PIG, WP Qp) 2me) — (WOP[P, V- V]G, W Qo) 2z
+ (£, WP]do, WP D) L2ee)
+ (WP (0, + V- V)1, WP G) 2ms)
=K1+ Ko + Kg + K4 + Ks.
Lemma 7.9. Let N> 3. Then|Ky| < EY2D.

Proof. First, write

Ki= Z(\N"éﬂr(g,, gj)’W[[}ﬁgz)Lz(Rs) _ Z Kiij)_
i,j=2 )

In view of Lemma 7.2,
|K§11)| = |(Wf36 (g1, 91), W' gz)LZ(Rs)'
< Ball9”(a, b, )7l 2z W 0 Gall2rs)
< IVx(& b, )llyy-1li(a, b, C)IIHy—lllwaﬁgzllLZ(Re),
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where

BS ~IW O (W . Y)lEzqeg

f W [ [ bicoss)a?

X @y ). (0w = (7)) }dv.dor) v
= [ ( [ [ bicosaua@)c; - (@).audvr) dv < oo

Here,q, g;, gk are polynomials of.
On the other hand, we have

lloalneey = f IW #ga(x, )IPdX < (@, b, )l zs)-

BI<N
This point and Proposition 3.5 yield

K& <llgnllsy 11920155 o) NIW O Galllgges)
< lI(@. 0, )l NGl es)-

IKEY) =llgally sy 1192l sy NIW O Galllgoges)
< 1G2llunees)ll(@, b, Q)llunes) 192lllsyes),

IKE?) =llgallynsy 1192l ey NIW O Galllgges)
< NGl 192 g ey

Now the proof of the lemma is completed.

Ko, K4, Ks are estimated as follows. We have, fgir= |a| + |y| < N,y # 0,
K2l =|([V - Vi W P12, W 6P 02) Lo
< W30 Gollzqee) IW P gollz ey
< CyIW a0 GallFopsy + MW P ol P -
Note that
Ka| =[((W'O[P, V- V]9, W' gp) 2(zs), W 0 02) L2z
< (@ (WX [P, v- V1g}, 0" 02) 2¢es)|
< (190" (@ b, O)ll 2zg) + V50" Gl 2y 19" Gl 2ges
< 1Vx(@ b, O)lFn-sqesy + 192llFines 1 2(esy-
In view of Proposition 3.8,
IKal =|([L. W] g2, WO ) L2(rs)|
<|(1£n W' dgo, W' 9P @) ogesy
+ |(W€ Py La(g), WP 92) + |(£2(W vg2), WP 92)

< (1192l ey + 1Gelll gt zey ) NIV S Galll s

L2(R®) L2(R®)
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Hence

IKal < Cy(lIg21 g + G2l ) + MW P G2l
Finally, recalling (7.1.5),

Ks| =|(W'& (0 + V- V,) g1, W o ) L2z

<@ {W (01 + V- Vi)dr}, 0" 02) Loges)|

<107 (@ + Vx)(@ b, Olizey)10° Gallizesys (Il < N =1, 1y] > 1)

< (||anw(aa b, O)ll 2(r3) + ||Vx3092|||_2(R§V))||(9092|||_2(R§\V)

< 11Vx(@ b, O)lF-s + 192llFins 2¢ey-
Now using (7.2.7) we conclude the

Lemma 7.10. Let|B = e +y| < N,Ja| < N=1,}y| = 1,N > 3. Then,

d
(7.2.9) Gl Iz ey + 1167 Galllzoqee

<EY20 + gyl

G2y *+ I8 B M sy + 1920 a 2ezy
4

7.3. A Priori Estimate. We take the linear combination

> CW@.14),+ ) cPA23),+ ) CcP(.26)

la|l<N-1 ler|<N 1<|al<N
+CW(7.2.8) Z CO(7.2.9),,.

Bl=la+yI<N,Jal<N-1,y|>1
With a suitable choice of the ctigientsC(”, C?, C{®),c®, Cl), we get

(7.3.1) dﬂté +D<H,

where

E=— Z CO[(@"r, V8" (2. —b, ©)) org) + (9D, V" @) 2e) |
la|l<N-1
+ ) CRIKGIE ey + D, CONGIT e
<N 1<lal<N ‘
+ COYGall% ) + >, CO)IW Dol ey
‘ Bl=la+yi<Njal<N-1y>1

D= ) CONVR@ED Ol + D, CONG e,
l|l<N-1 la|<N

©) 2 4 2
+ ), ORIl ey + COlIGNGoqes,
1<]el<N

* > CO Mgl

Bi=la-+y1<NJJal<N-1 =1

H =D181 + 1)282 + DE.
Clearly, it holds that

2
BIRS)’

E~E D~D,
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and
H < DE.
Now (7.3.1) gives

t

&(t) +[1-C sup&(r)| f D(r)dr < CE(0),
O<r<t 0

which leads to the closure @f priori estimate and then completes the proof of Theorem

7.1.

Now, the proof of Theorem 1.1 can be completed by the usual continuation argument
based on Theorem 4.3 and Theorem 7.1.
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