12 research outputs found
Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy
To accomplish a diagnosis in patients with a rare unclassified disorder is difficult. In this study, we used magnetic resonance imaging pattern recognition analysis to identify patients with the same novel heritable disorder. Whole-exome sequencing was performed to discover the mutated gene. We identified seven patients sharing a previously undescribed magnetic resonance imaging pattern, characterized by initial swelling with T2 hyperintensity of the basal nuclei, thalami, cerebral white matter and cortex, pons and midbrain, followed by rarefaction or cystic degeneration of the white matter and, eventually, by progressive cerebral, cerebellar and brainstem atrophy. All patients developed a severe encephalopathy with rapid deterioration of neurological functions a few weeks after birth, followed by respiratory failure and death. Lactate was elevated in body fluids and on magnetic resonance spectroscopy in most patients. Whole-exome sequencing in a single patient revealed two predicted pathogenic, heterozygous missense mutations in the SLC19A3 gene, encoding the second thiamine transporter. Additional predicted pathogenic mutations and deletions were detected by Sanger sequencing in all six other patients. Pathology of brain tissue of two patients demonstrated severe cerebral atrophy and microscopic brain lesions similar to Leigh's syndrome. Although the localization of SLC19A3 expression in brain was similar in the two investigated patients compared to age-matched control subjects, the intensity of the immunoreactivity was increased. Previously published patients with SLC19A3 mutations have a milder clinical phenotype, no laboratory evidence of mitochondrial dysfunction and more limited lesions on magnetic resonance imaging. In some, cerebral atrophy has been reported. The identification of this new, severe, lethal phenotype characterized by subtotal brain degeneration broadens the phenotypic spectrum of SLC19A3 mutations. Recognition of the associated magnetic resonance imaging pattern allows a fast diagnosis in affected infant
Identification of three novel pathogenic mutations in cystathionine beta-synthase gene of Pakistani intellectually disabled patients
Background: Classical homocystinuria (HCU) is an autosomal recessive inborn error of metabolism, which is caused by the cystathionine-β-synthase (CBS: encoded by CBS) deficiency. Symptoms of untreated classical HCU patients include intellectual disability (ID), ectopia lentis and long limbs, along with elevated plasma methionine, and homocysteine.Methods: A total of 429 ID patients (age range: 1.6-23 years) were sampled from Northern areas of Punjab, Pakistan. Biochemical and genetic analyses were performed to find classical HCU disease in ID patients.Results: Biochemically, nine patients from seven unrelated families were identified with high levels of plasma methionine and homocysteine. Targeted exonic analysis of CBS confirmed seven causative homozygous mutations; of which three were novel missense mutations (c.451G\u3eT; p.Gly151Trp, c.975G\u3eC; p.Lys325Asn and c.1039 + 1G\u3eT splicing), and four were recurrent variants (c.451 + 1G\u3eA; IVS4 + 1 splicing, c.770C\u3eT; p.Thr257Met, c.808_810del GAG; p.Glu270del and c.752T\u3eC; p.Leu251Pro). Treatment of patients was initiated without further delay with pyridoxine, folic acid, cobalamin, and betaine as well as dietary protein restriction. The immediate impact was noticed in behavioral improvement, decreased irritability, improved black hair color, and socialization. Overall, health outcomes in this disorder depend on the age and symptomatology at the time of treatment initiation.Conclusions: With personalized treatment and care, such patients can reach their full potential of living as healthy a life as possible. This screening study is one of the pioneering initiatives in Pakistan which would help to minimize the burden of such treatable inborn errors of metabolism in the intellectually disabled patients
Identification of three novel pathogenic mutations in cystathionine beta-synthase gene of Pakistani intellectually disabled patients
Classical homocystinuria (HCU) is an autosomal recessive inborn error of metabolism, which is caused by the cystathionine-β-synthase (CBS: encoded by CBS) deficiency. Symptoms of untreated classical HCU patients include intellectual disability (ID), ectopia lentis and long limbs, along with elevated plasma methionine, and homocysteine. A total of 429 ID patients (age range: 1.6-23 years) were sampled from Northern areas of Punjab, Pakistan. Biochemical and genetic analyses were performed to find classical HCU disease in ID patients. Biochemically, nine patients from seven unrelated families were identified with high levels of plasma methionine and homocysteine. Targeted exonic analysis of CBS confirmed seven causative homozygous mutations; of which three were novel missense mutations (c.451G>T; p.Gly151Trp, c.975G>C; p.Lys325Asn and c.1039 + 1G>T splicing), and four were recurrent variants (c.451 + 1G>A; IVS4 + 1 splicing, c.770C>T; p.Thr257Met, c.808_810del GAG; p.Glu270del and c.752T>C; p.Leu251Pro). Treatment of patients was initiated without further delay with pyridoxine, folic acid, cobalamin, and betaine as well as dietary protein restriction. The immediate impact was noticed in behavioral improvement, decreased irritability, improved black hair color, and socialization. Overall, health outcomes in this disorder depend on the age and symptomatology at the time of treatment initiation. With personalized treatment and care, such patients can reach their full potential of living as healthy a life as possible. This screening study is one of the pioneering initiatives in Pakistan which would help to minimize the burden of such treatable inborn errors of metabolism in the intellectually disabled patients
D-2-hydroxyglutaric aciduria Type I: Functional analysis of D2HGDH missense variants.
D-2-hydroxyglutaric aciduria Type I (D-2-HGA Type I), a neurometabolic disorder with a broad clinical spectrum, is caused by recessive variants in the D2HGDH gene encoding D-2-hydroxyglutarate dehydrogenase (D-2-HGDH). We and others detected 42 potentially pathogenic variants in D2HGDH of which 31 were missense. We developed functional studies to investigate the effect of missense variants on D-2-HGDH catalytic activity. Site-directed mutagenesis was used to introduce 31 missense variants in the pCMV5-D2HGDH expression vector. The wild type and missense variants were overexpressed in HEK293 cells. D-2-HGDH enzyme activity was evaluated based on the conversion of [ H ]D-2-HG to [ H ]2-ketoglutarate, which was subsequently converted into [ H ]L-glutamate and the latter quantified by LC-MS/MS. Eighteen variants resulted in almost complete ablation of D-2-HGDH activity and thus, should be considered pathogenic. The remaining 13 variants manifested residual activities ranging between 17% and 94% of control enzymatic activity. Our functional assay evaluating the effect of novel D2HGDH variants will be beneficial for the classification of missense variants and determination of pathogenicity
Clinically Distinct Phenotypes of Canavan Disease Correlate with Residual Aspartoacylase Enzyme Activity
International audienc
Thirteen New Patients with Guanidinoacetate Methyltransferase Deficiency and Functional Characterization of Nineteen Novel Missense Variants in the GAMT Gene
International audienceGuanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients, 50 different mutations in the GAMT gene have been identified with missense variants being the most common. Clinical and biochemical features of the patients with missense variants were obtained from their physicians using a questionnaire. In 20 patients, 17 missense variants, 25% had a severe, 55% a moderate, and 20% a mild phenotype. The effect of these variants on GAMT enzyme activity was overexpressed using primary GAMT-D fibroblasts: 17 variants retained no significant activity and are therefore considered pathogenic. Two additional variants, c.22C\textgreaterA (p.Pro8Thr) and c.79T\textgreaterC (p.Tyr27His) (the latter detected in control cohorts) are in fact not pathogenic as these alleles restored GAMT enzyme activity, although both were predicted to be possibly damaging by in silico analysis. We report 13 new patients with GAMT-D, six novel mutations and functional analysis of 19 missense variants, all being included in our public LOVD database. Our functional assay is important for the confirmation of the pathogenicity of identified missense variants in the GAMT gene
An overview of combined D-2- and L-2-hydroxyglutaric aciduria: functional analysis of CIC variants
Combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA) is a devastating neurometabolic disorder, usually lethal in the first years of life. Autosomal recessive mutations in the SLC25A1 gene, which encodes the mitochondrial citrate carrier (CIC), were previously detected in patients affected with combined D/L-2-HGA. We showed that transfection of deficient fibroblasts with wild-type SLC25A1 restored citrate efflux and decreased intracellular 2-hydroxyglutarate levels, confirming that deficient CIC is the cause of D/L-2-HGA. We developed and implemented a functional assay and applied it to all 17 missense variants detected in a total of 26 CIC-deficient patients, including eight novel cases, showing reduced activities of varying degrees. In addition, we analyzed the importance of residues affected by these missense variants using our existing scoring system. This allowed not only a clinical and biochemical overview of the D/L-2-HGA patients but also phenotype-genotype correlation studies