70 research outputs found
Learning Dynamic Classes of Events using Stacked Multilayer Perceptron Networks
People often use a web search engine to find information about events of
interest, for example, sport competitions, political elections, festivals and
entertainment news. In this paper, we study a problem of detecting
event-related queries, which is the first step before selecting a suitable
time-aware retrieval model. In general, event-related information needs can be
observed in query streams through various temporal patterns of user search
behavior, e.g., spiky peaks for popular events, and periodicities for
repetitive events. However, it is also common that users search for non-popular
events, which may not exhibit temporal variations in query streams, e.g., past
events recently occurred, historical events triggered by anniversaries or
similar events, and future events anticipated to happen. To address the
challenge of detecting dynamic classes of events, we propose a novel deep
learning model to classify a given query into a predetermined set of multiple
event types. Our proposed model, a Stacked Multilayer Perceptron (S-MLP)
network, consists of multilayer perceptron used as a basic learning unit. We
assemble stacked units to further learn complex relationships between neutrons
in successive layers. To evaluate our proposed model, we conduct experiments
using real-world queries and a set of manually created ground truth.
Preliminary results have shown that our proposed deep learning model
outperforms the state-of-the-art classification models significantly.Comment: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, 6 pages, 4
figure
Multiple Models for Recommending Temporal Aspects of Entities
Entity aspect recommendation is an emerging task in semantic search that
helps users discover serendipitous and prominent information with respect to an
entity, of which salience (e.g., popularity) is the most important factor in
previous work. However, entity aspects are temporally dynamic and often driven
by events happening over time. For such cases, aspect suggestion based solely
on salience features can give unsatisfactory results, for two reasons. First,
salience is often accumulated over a long time period and does not account for
recency. Second, many aspects related to an event entity are strongly
time-dependent. In this paper, we study the task of temporal aspect
recommendation for a given entity, which aims at recommending the most relevant
aspects and takes into account time in order to improve search experience. We
propose a novel event-centric ensemble ranking method that learns from multiple
time and type-dependent models and dynamically trades off salience and recency
characteristics. Through extensive experiments on real-world query logs, we
demonstrate that our method is robust and achieves better effectiveness than
competitive baselines.Comment: In proceedings of the 15th Extended Semantic Web Conference (ESWC
2018
How to Search the Internet Archive Without Indexing It
Significant parts of cultural heritage are produced on the web during the
last decades. While easy accessibility to the current web is a good baseline,
optimal access to the past web faces several challenges. This includes dealing
with large-scale web archive collections and lacking of usage logs that contain
implicit human feedback most relevant for today's web search. In this paper, we
propose an entity-oriented search system to support retrieval and analytics on
the Internet Archive. We use Bing to retrieve a ranked list of results from the
current web. In addition, we link retrieved results to the WayBack Machine;
thus allowing keyword search on the Internet Archive without processing and
indexing its raw archived content. Our search system complements existing web
archive search tools through a user-friendly interface, which comes close to
the functionalities of modern web search engines (e.g., keyword search, query
auto-completion and related query suggestion), and provides a great benefit of
taking user feedback on the current web into account also for web archive
search. Through extensive experiments, we conduct quantitative and qualitative
analyses in order to provide insights that enable further research on and
practical applications of web archives
Diachronic Variation of Temporal Expressions in Scientific Writing Through the Lens of Relative Entropy
The abundance of temporal information in documents has lead to an increased interest in processing such information in the NLP community by considering temporal expressions. Besides domain-adaptation, acquiring knowledge on variation of temporal expressions according to time is relevant for improvement in automatic processing. So far, frequency-based accounts dominate in the investigation of specific temporal expressions. We present an approach to investigate diachronic changes of temporal expressions based on relative entropy – with the advantage of using conditioned probabilities rather than mere frequency. While we focus on scientific writing, our approach is generalizable to other domains and interesting not only in the field of NLP, but also in humanities.This work is partially funded by Deutsche Forschungsgemeinschaft (DFG) under grant SFB 1102: Information Density and Linguistic Encoding (www.sfb1102.uni-saarland.de)
Time and information retrieval: Introduction to the special issue
The Special Issue of Information Processing and Management includes research papers on the intersection between time and information retrieval. In 'Evaluating Document Filtering Systems over Time', Tom Kenter and Krisztian Balog propose a time-aware way of measuring a system's performance at filtering documents. Manika Kar, SeAa7acute;rgio Nunes and Cristina Ribeiro present interesting methods for summarizing changes in dynamic text collections over time in their paper 'Summarization of Changes in Dynamic Text Collection using Latent Dirichlet Allocation Model.' Hideo Joho, Adam Jatowt and Roi Blanco report on the temporal information searching behaviour of users and their strategies for dealing with searches that have a temporal nature in 'Temporal Information Searching Behaviour and Strategies', a user study. In controlled settings, thirty participants are asked to perform searches on an array of topics on the web to find information related to particular time scopes. Adam Jatowt, Ching-man Au Yeung and Katsumi Tanaka present a 'Generic Method for Detecting Content Time of Documents'. The authors propose several methods for estimating the focus time of documents, i.e. the time a document's content refers to. Xujian Zhao, Peiquan Jin and Lihua Yue present an approach to determining the time of the underlying topic or event in their article entitled 'Discovering Topic Time from Web News'
Real-time timeline summarisation for high-impact events in Twitter.
Twitter has become a valuable source of event-related
information, namely, breaking news and local event reports. Due
to its capability of transmitting information in real-time, Twitter is
further exploited for timeline summarisation of high-impact events,
such as protests, accidents, natural disasters or disease outbreaks.
Such summaries can serve as important event digests where users
urgently need information, especially if they are directly affected by
the events. In this paper, we study the problem of timeline summarisation
of high-impact events that need to be generated in real-time.
Our proposed approach includes four stages: classification of realworld
events reporting tweets, online incremental clustering, postprocessing
and sub-events summarisation. We conduct a comprehensive
evaluation of different stages on the “Ebola outbreak” tweet
stream, and compare our approach with several baselines, to demonstrate
its effectiveness. Our approach can be applied as a replacement
of a manually generated timeline and provides early alarms for disaster
surveillance
- …