54,950 research outputs found
Magnetoresistivity Modulated Response in Bichromatic Microwave Irradiated Two Dimensional Electron Systems
We analyze the effect of bichromatic microwave irradiation on the
magnetoresistivity of a two dimensional electron system. We follow the model of
microwave driven Larmor orbits in a regime where two different microwave lights
with different frequencies are illuminating the sample ( and ).
Our calculated results demonstrate that now the electronic orbit centers are
driven by the superposition of two harmonic oscillatory movements with the
frequencies of the microwave sources. As a result the magnetoresisitivity
response presents modulated pulses in the amplitude with a frequency of
, whereas the main response oscillates with
.Comment: 4 pages, 3 figures Accepted in Applied Physics Letter
From zero resistance states to absolute negative conductivity in microwave irradiated 2D electron systems
Recent experimental results regarding a 2D electron gas subjected to
microwave radiation reveal that magnetoresistivity, apart from presenting
oscillations and zero resistance states, can evolve to negative values at
minima. In other words, the current can evolve from flowing with no
dissipation, to flow in the opposite direction of the dc bias applied. Here we
present a theoretical model in which the existence of radiation-induced
absolute negative conductivity is analyzed. Our model explains the transition
from zero resistance states to absolute negative conductivity in terms of
multiphoton assisted electron scattering due to charged impurities. It shows as
well, how this transition can be driven by tuning microwave frequency and
intensity. Then it opens the possibility of controlling the electron Larmor
orbits dynamics (magnetoconductivity) in microwave driven nanodevices. The
analysis of zero resistance states is therefore promising because new optical
and transport properties in nanodevices will be expected.Comment: 5 pages and 4 figure
The electromagnetic form factors of the proton in the timelike region
The reactions ppbar -> e+e- and e+e- -> ppbar are analyzed in the
near-threshold region. Specific emphasis is put on the role played by the
interaction in the initial- or final antinucleon-nucleon state which is taken
into account rigorously. For that purpose a recently published NNbar potential
derived within chiral effective field theory and fitted to results of a new
partial-wave analysis of ppbar scattering data is employed. Our results provide
strong support for the conjecture that the pronounced energy dependence of the
e+e- ppbar cross section, seen in pertinent experiments, is primarily due
to the ppbar interaction. Predictions for the proton electromagnetic form
factors G_E and G_M in the timelike region, close to the NNbar threshold, and
for spin-dependent observables are presented. The steep rise of the effective
form factor for energies close to the ppbar threshold is explained solely in
terms of the ppbar interaction. The corresponding experimental information is
quantitatively described by our calculation.Comment: 14 pages, 11 figure
On the near-threshold invariant mass spectrum measured in and decays
A systematic analysis of the near-threshold enhancement in the
invariant mass spectrum seen in the decay reactions and
is
presented. The enhancement is assumed to be due to the final-state
interaction (FSI) and the pertinent FSI effects are evaluated in an approach
that is based on the distorted-wave Born approximation. For the
interaction a recent potential derived within chiral effective field theory and
fitted to results of a partial-wave analysis of scattering data is
considered and, in addition, an older phenomenological model constructed by the
J\"ulich group. It is shown that the near-threshold spectrum observed in
various decay reactions can be reproduced simultaneously and consistently by
our treatment of the FSI. It turns out that the interaction in the
isospin-1 channel required for the description of the decay predicts a bound state.Comment: 13 pages, 12 figure
Microscopic origin of light emission in Al_yGa_{1-y}N/GaN superlattice: Band profile and active site
We present first-principles calculations of AlGaN/GaN superlattice,
clarifying the microscopic origin of the light emission and revealing the
effect of local polarization within the quantum well. Profile of energy band
and distributions of electrons and holes demonstrate the existence of a main
active site in the well responsible for the main band-edge light emission. This
site appears at the position where the local polarization becomes zero. With
charge injection, the calculated optical spectra show that the broadening of
the band gap at the active site leads to the blueshift of emission wavelength
Massive and Red Objects predicted by a semianalytical model of galaxy formation
We study whether hierarchical galaxy formation in a concordance CDM
universe can produce enough massive and red galaxies compared to the
observations. We implement a semi-analytical model in which the central black
holes gain their mass during major mergers of galaxies and the energy feedback
from active galaxy nuclei (AGN) suppresses the gas cooling in their host halos.
The energy feedback from AGN acts effectively only in massive galaxies when
supermassive black holes have been formed in the central bulges. Compared with
previous models without black hole formation, our model predicts more massive
and luminous galaxies at high redshift, agreeing with the observations of K20
up to . Also the predicted stellar mass density from massive galaxies
agrees with the observations of GDDS. Because of the energy feedback from AGN,
the formation of new stars is stopped in massive galaxies with the termination
of gas cooling and these galaxies soon become red with color 5 (Vega
magnitude), comparable to the Extremely Red Objects (EROs) observed at redshift
1-2. Still the predicted number density of very EROs is lower than
observed at , and it may be related to inadequate descriptions of dust
extinction, star formation history and AGN feedback in those luminous galaxies.Comment: Accepted for Publication in ApJ, added reference
Scattering Rule in Soliton Cellular Automaton associated with Crystal Base of
In terms of the crystal base of a quantum affine algebra ,
we study a soliton cellular automaton (SCA) associated with the exceptional
affine Lie algebra . The solitons therein are labeled
by the crystals of quantum affine algebra . The scatteing rule
is identified with the combinatorial matrix for -crystals.
Remarkably, the phase shifts in our SCA are given by {\em 3-times} of those in
the well-known box-ball system.Comment: 25 page
Amorphous metallizations for high-temperature semiconductor device applications
The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C
An Electronic Mach-Zehnder Quantum Eraser
We propose an electronic quantum eraser in which the electrons are injected
into a mesoscopic conductor at the quantum Hall regime. The conductor is
composed of a two-path interferometer which is an electronic analogue of the
optical Mach-Zehnder interferometer, and a quantum point contact detector
capacitively coupled to the interferometer. While the interference of the
output current at the interferometer is shown to be suppressed by the
which-path information, we show that the which-path information is erased by
the zero-frequency cross correlation measurement between the interferometer and
the detector output leads. We also investigate a modified setup in which the
detector is replaced by a two-path interferometer.We show that the path
distinguishability and the visibility of the joint detection can be controlled
in a continuous manner, and satisfy a complementarity relation for the
entangled electrons.Comment: 5 pages, 2 figure
- …