986 research outputs found

    The Role of Undercoordinated Sites on Zinc Electrodes for CO2 Reduction to CO

    Get PDF
    The electrochemical CO2 reduction reaction (CO2RR) using renewable energies is a promising route toward global carbon neutrality. Recently, the use of copper catalysts and CO feedstocks, instead of CO2, has been shown to enhance the selectivity toward multicarbon products, leading to increased efforts in developing tandem electrocatalytic systems. State-of-the-art CO2-to-CO electrocatalysts are mainly based on noble metals such as silver and gold. Earth-abundant zinc, in contrast, displays poorer selectivity and activity. Herein, the use of porous dendritic oxidederived zinc (OD-Zn) catalysts for CO2RR is reported. These catalysts can reduce CO2 to CO with a maximum Faradaic efficiency of 86% at βˆ’0.95 V versus reversible hydrogen electrode (RHE) and partial current density of βˆ’266 mA cm–2 at βˆ’1.00 V vs RHE. OD-Zn is further found to have a higher amount of undercoordinated sites and exhibits higher CO2RR activity and CO selectivity than electrodeposited Zn metal. While oxygen vacancies have been previously implicated as active sites, detailed experiments and density functional theory calculations show that Zn sites with a high degree of undercoordination provide even higher activity, in view of their nearly optimal *COOH adsorption energies. These findings showcase Zn-Oderived particles with plentiful undercoordinated sites as cost-effective electrocatalysts for CO production

    Light scattering observations of spin reversal excitations in the fractional quantum Hall regime

    Full text link
    Resonant inelastic light scattering experiments access the low lying excitations of electron liquids in the fractional quantum Hall regime in the range 2/5β‰₯Ξ½β‰₯1/32/5 \geq \nu \geq 1/3. Modes associated with changes in the charge and spin degrees of freedom are measured. Spectra of spin reversed excitations at filling factor ν≳1/3\nu \gtrsim 1/3 and at ν≲2/5\nu \lesssim 2/5 identify a structure of lowest spin-split Landau levels of composite fermions that is similar to that of electrons. Observations of spin wave excitations enable determinations of energies required to reverse spin. The spin reversal energies obtained from the spectra illustrate the significant residual interactions of composite fermions. At Ξ½=1/3\nu = 1/3 energies of spin reversal modes are larger but relatively close to spin conserving excitations that are linked to activated transport. Predictions of composite fermion theory are in good quantitative agreement with experimental results.Comment: Submitted to special issue of Solid State Com

    Glueballs of Super Yang-Mills from Wrapped Branes

    Full text link
    In this paper we study qualitative features of glueballs in N=1 SYM for models of wrapped branes in IIA and IIB backgrounds. The scalar mode, 0++ is found to be a mixture of the dilaton and the internal part of the metric. We carry out the numerical study of the IIB background. The potential found exhibits a mass gap and produces a discrete spectrum without any cut-off. We propose a regularization procedure needed to make these states normalizable.Comment: 22 pages plus a appendixes, 2 figure

    Resonant Enhancement of Inelastic Light Scattering in the Fractional Quantum Hall Regime at Ξ½=1/3\nu=1/3

    Full text link
    Strong resonant enhancements of inelastic light scattering from the long wavelength inter-Landau level magnetoplasmon and the intra-Landau level spin wave excitations are seen for the fractional quantum Hall state at Ξ½=1/3\nu = 1/3. The energies of the sharp peaks (FWHM ≲0.2meV\lesssim 0.2meV) in the profiles of resonant enhancement of inelastic light scattering intensities coincide with the energies of photoluminescence bands assigned to negatively charged exciton recombination. To interpret the observed enhancement profiles, we propose three-step light scattering mechanisms in which the intermediate resonant transitions are to states with charged excitonic excitations.Comment: 5 pages, 5 figure

    UHECR Acceleration in Dark Matter Filaments of Cosmological Structure Formation

    Full text link
    A mechanism for proton acceleration to ~10^21eV is suggested. It may operate in accretion flows onto thin dark matter filaments of cosmic structure formation. The flow compresses the ambient magnetic field to strongly increase and align it with the filament. Particles begin the acceleration by the ExB drift with the accretion flow. The energy gain in the drift regime is limited by the conservation of the adiabatic invariant p_perp^2/B. Upon approaching the filament, the drift turns into the gyro-motion around the filament so that the particle moves parallel to the azimuthal electric field. In this 'betatron' regime the acceleration speeds up to rapidly reach the electrodynamic limit cpmax=eBRcp_{max}=eBR for an accelerator with magnetic field BB and the orbit radius RR (Larmor radius). The periodic orbit becomes unstable and the particle slings out of the filament to the region of a weak (uncompressed) magnetic field, which terminates the acceleration. The mechanism requires pre-acceleration that is likely to occur in structure formation shocks upstream or nearby the filament accretion flow. Previous studies identify such shocks as efficient proton accelerators to a firm upper limit ~10^19.5 eV placed by the catastrophic photo-pion losses. The present mechanism combines explosive energy gain in its final (betatron) phase with prompt particle release from the region of strong magnetic field. It is this combination that allows protons to overcome both the photo-pion and the synchrotron-Compton losses and therefore attain energy 10^21 eV. A requirement on accelerator to reach a given E_max placed by the accelerator energy dissipation \propto E_{max}^{2}/Z_0 due to the finite vacuum impedance Z_0 is circumvented by the cyclic operation of the accelerator.Comment: 34 pages, 10 figures, to be published in JCA

    Influence of the starting composition on the structural and superconducting properties of MgB2 phase

    Full text link
    We report the preparation of Mg1βˆ’x_{1-x}B2_{2} (0≀\lex≀\le0.5) compounds with the nominal compositions. Single phase MgB2_{2} was obtained for x=0 sample. For 0<<x≀\le0.5, MgB4_{4} coexists with "MgB2_{2}" and the amount of MgB4_{4} increases with x. With the increase of x, the lattice parameter c{\it c} of "MgB2_{2}" increases and the lattice parameter a{\it a} decreases, correspondingly Tc_{c} of Mg1βˆ’x_{1-x}B2_{2} decreases. The results were discussed in terms of the presence of Mg vacancies or B interstitials in the MgB2_{2} structure. This work is helpful to the understanding of the MgB2_{2} films with different Tc_{c}, as well as the Mg site doping effect for MgB2_{2}.Comment: 11 pages, 4 figure

    Expression profiling of cyclin B1 and D1 in cervical carcinoma

    No full text
    Aim: Cyclins are a family of regulatory proteins that play a key role in controlling the cell cycle. Abnormalities of cell cycle regulators, including cyclins and cyclin dependent kinases, have been reported in various malignant tumors. This study was undertaken to quantitatively detect cyclin B1 and D1 in cervical cancer. Methods: A quantitative real-time reverse transcription polymerase chain reaction and Western blot assay were used to analyze the expression of cyclin B1/D1 mRNA and proteins, respectively, in fresh invasive cervical cancer (n = 41) and normal cervical tissues (n = 10). Results: There was significantly greater cyclin B1 expression in invasive cervical cancer than in normal cervical tissue (P = 0.019). However, cyclin D1 expression was not significantly different. A Western blot assay yielded similar results. Conclusion: Our results were consistent with the concept that up-regulation of cyclin B1 expression occurred in cervical cancer and an aberrant expression of cyclin B1 might play an important role in cervical carcinogenesis.ЦСль: Ρ†ΠΈΠΊΠ»ΠΈΠ½Ρ‹ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой сСмСйство рСгуляторных Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ». НаличиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ структурных Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ рСгуляторов ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° (Ρ†ΠΈΠΊΠ»ΠΈΠ½ΠΎΠ² ΠΈ циклинзависимых ΠΊΠΈΠ½Π°Π·) Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. ЦСлью Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ количСствСнного опрСдСлСния Ρ†ΠΈΠΊΠ»ΠΈΠ½ΠΎΠ² B1 ΠΈ D1 Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ€Π°ΠΊΠ° шСйки ΠΌΠ°Ρ‚ΠΊΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ уровня экспрСссии Ρ†ΠΈΠΊΠ»ΠΈΠ½ΠΎΠ² B1/D1 (mRNA ΠΈ Π±Π΅Π»ΠΊΠΎΠ² соотвСтствСнно) Π² свСТСполучСнных ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° шСйки ΠΌΠ°Ρ‚ΠΊΠΈ (n = 41) ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ шСйки ΠΌΠ°Ρ‚ΠΊΠΈ (n = 10) ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ RT-PCR Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ ВСстСрн-Π±Π»ΠΎΡ‚ Π°Π½Π°Π»ΠΈΠ·Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ Π±ΠΎΠ»Π΅Π΅ высокий ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии Π³Π΅Π½Π° Ρ†ΠΈΠΊΠ»ΠΈΠ½Π° Π’1 Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° шСйки ΠΌΠ°Ρ‚ΠΊΠΈ, Ρ‡Π΅ΠΌ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ (P = 0,019). НС выявлСны Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ различия Π² ΡƒΡ€ΠΎΠ²Π½Π΅ экспрСссии Π³Π΅Π½Π° Ρ†ΠΈΠΊΠ»ΠΈΠ½Π° D1. ΠŸΡ€ΠΈ ВСстСрн-Π±Π»ΠΎΡ‚ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡŽ ΠΎΠ± Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ экспрСссии Ρ†ΠΈΠΊΠ»ΠΈΠ½Π° Π’1 ΠΏΡ€ΠΈ Ρ€Π°ΠΊΠ΅ шСйки ΠΌΠ°Ρ‚ΠΊΠΈ. АбСррантная экспрСссия Ρ†ΠΈΠΊΠ»ΠΈΠ½Π° Π’1 ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ ΠΏΡ€ΠΈ злокачСствСнной трансформации эпитСлия шСйки ΠΌΠ°Ρ‚ΠΊΠΈ

    Larkin-Ovchinnikov-Fulde-Ferrell state in quasi-one-dimensional superconductors

    Full text link
    The properties of a quasi-one-dimensional (quasi-1D) superconductor with {\it an open Fermi surface} are expected to be unusual in a magnetic field. On the one hand, the quasi-1D structure of the Fermi surface strongly favors the formation of a non-uniform state (Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state) in the presence of a magnetic field acting on the electron spins. On the other hand, a magnetic field acting on an open Fermi surface induces a dimensional crossover by confining the electronic wave-functions wave-functions along the chains of highest conductivity, which results in a divergence of the orbital critical field and in a stabilization at low temperature of a cascade of superconducting phases separated by first order transistions. In this paper, we study the phase diagram as a function of the anisotropy. We discuss in details the experimental situation in the quasi-1D organic conductors of the Bechgaard salts family and argue that they appear as good candidates for the observation of the LOFF state, provided that their anisotropy is large enough. Recent experiments on the organic quasi-1D superconductor (TMTSF)2_2ClO4_4 are in agreement with the results obtained in this paper and could be interpreted as a signature of a high-field superconducting phase. We also point out the possibility to observe a LOFF state in some quasi-2D organic superconductors.Comment: 24 pages+17 figures (upon request), RevTex, ORSAY-LPS-24109
    • …
    corecore