3,406 research outputs found

    Rejuvenation: an integrated approach to regenerative medicine

    Full text link
    The word “rejuvenate” found in the Merriam-Webster dictionary is (1) to make young or youthful again: give new vigor to, and (2) to restore to an original or new state. Regenerative medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to age, disease, damage, or congenital defects. To accomplish this, approaches including transplantation, tissue engineering, cell therapy, and gene therapy are brought into action. These all use exogenously prepared materials to forcefully mend the failed organ. The adaptation of the materials in the host and their integration into the organ are all uncertain. It is a common sense that tissue injury in the younger is easily repaired and the acute injury is healed better and faster. Why does the elder have a diminished capacity of self-repairing, or why does chronic injury cause the loss of the self-repairing capacity? There must be some critical elements that are involved in the repair process, but are suppressed in the elder or under the chronic injury condition. Rejuvenation of the self-repair mechanism would be an ideal solution for functional recovery of the failed organ. To achieve this, it would involve renewal of the injury signaling, reestablishment of the communication and transportation system, recruitment of the materials for repairing, regeneration of the failed organ, and rehabilitation of the renewed organ. It thus would require a comprehensive understanding of developmental biology and a development of new approaches to activate the critical players to rejuvenate the self-repair mechanism in the elder or under chronic injury condition. Efforts focusing on rejuvenation would expect an alternative, if not a better, accomplishment in the regenerative medicine

    Exogenous glutathione decreases cellular cadmium uptake and toxicity

    Get PDF
    ABSTRACT: The effect of intracellula

    Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse

    Get PDF
    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(˙-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(˙-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(˙-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging

    Reliable Magnetic Resonance Imaging Based Grading System for Cervical Intervertebral Disc Degeneration

    Get PDF
    Study DesignObservational.PurposeTo develop a simple and comprehensive grading system for cervical discs that precisely, consistently and meaningfully presents radiologic and morphologic data.Overview of LiteratureThe Thompson grading system is commonly used to classify the severity of degenerative lumbar discs on magnetic resonance imaging (MRI). Inherent differences in the morphological and physiological characteristics of cervical discs have hindered development of precise classification systems. Other grading systems have been developed for degenerating cervical discs, but their versatility and feasibility in the clinical setting is suboptimal.MethodsMRIs of 46 human cervical discs were de-identified and displayed in PowerPoint format. Each slide depicted a single disc with a normal (grade 0) disc displayed in the top right corner for reference. The presentation was given to 25 physicians comprising attending spine surgeons, spine fellows, orthopaedic residents, and two attending musculoskeletal radiologists. The grading system included Grade 0 (normal height compared to C2–3, mid cleft still visible), grade 1 (dark disc, normal height), grade 2 (collapsed disc, few osteophytes), and grade 3 (collapsed disc, many osteophytes). The ease of use of the system was gauged in the participants and the interobserver reliability was calculated.ResultsThe intraclass correlation coefficient for interobserver reliability was 0.87, and 0.94 for intraobserver reliability, indicating excellent reliability. Ninety-five percent and 85 percent of the clinicians judged the grading system to be clinically feasible and useful in daily practice, respectively.ConclusionsThe grading system is easy to use, has excellent reliability, and can be used for precise and consistent clinician communication

    Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy.

    Get PDF
    Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization

    Interactions among mitochondrial proteins altered in glioblastoma

    Get PDF
    Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change ≥2) and significantly altered in GBM (p ≤ 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein–protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology

    Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)

    Get PDF
    We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe
    corecore