133 research outputs found

    On Internal Resonance Analysis of a Double-Cable-Stayed Shallow-Arch Model with Elastic Supports at Both Ends

    Get PDF
    In previous research on the nonlinear dynamics of cable-stayed bridges, boundary conditions were not properly modeled in the modeling. In order to obtain the nonlinear dynamics of cable-stayed bridges more accurately, a double-cable-stayed shallow-arch model with elastic supports at both ends and the initial configuration of bridge deck included in the modeling is developed in this study. The in-plane eigenvalue problems of the model are solved by dividing the shallow arch (SA) into three partitions according to the number of cables and the piecewise functions are taken as trial functions of the SA. Then, the in-plane one-to-one-to-one internal resonance among the global mode and the local modes (two cables\u27 modes) is investigated when external primary resonance occurs. The ordinary differential equations (ODEs) are obtained by Galerkin\u27s method and solved by the method of multiple time scales. The stable equilibrium solutions of modulation equations are obtained by using the Newton-Raphson method. In addition, the frequency-/force-response curves under different vertical stiffness are provided to study the nonlinear dynamic behaviors of the elastically supported model. To validate the theoretical analyses, the Runge-Kutta method is applied to obtain the numerical solutions. Finally, some interesting conclusions are drawn

    Resonance Analysis between Deck and Cables in Cable-Stayed Bridges with Coupling Effect of Adjacent Cables Considered

    Get PDF
    The nonlinear dynamic model of a shallow arch with multiple cables is developed to model a long-span cable-stayed bridge. Based on the veering phenomenon of cable-stayed bridges, the in-plane modal internal resonance between the first mode of the shallow arch and the first mode of the cable is investigated under both primary resonance and subharmonic resonance. Modulation equations of the dynamic system are obtained by Galerkin discretization and the multiple scales method, in which the equilibrium solution of modulation equations is obtained by the Newton–Raphson method. Meanwhile, the Runge–Kutta method is applied to directly solve the ordinary differential equations to verify the accuracy of the perturbation analysis. Numerical analysis shows that the internal resonance occurs in adjacent cables; the energy transfer mechanism and the dynamic behavior of system become more complex

    DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders

    Full text link
    Image colorization is a challenging problem due to multi-modal uncertainty and high ill-posedness. Directly training a deep neural network usually leads to incorrect semantic colors and low color richness. While transformer-based methods can deliver better results, they often rely on manually designed priors, suffer from poor generalization ability, and introduce color bleeding effects. To address these issues, we propose DDColor, an end-to-end method with dual decoders for image colorization. Our approach includes a pixel decoder and a query-based color decoder. The former restores the spatial resolution of the image, while the latter utilizes rich visual features to refine color queries, thus avoiding hand-crafted priors. Our two decoders work together to establish correlations between color and multi-scale semantic representations via cross-attention, significantly alleviating the color bleeding effect. Additionally, a simple yet effective colorfulness loss is introduced to enhance the color richness. Extensive experiments demonstrate that DDColor achieves superior performance to existing state-of-the-art works both quantitatively and qualitatively. The codes and models are publicly available at https://github.com/piddnad/DDColor.Comment: ICCV 2023; Code: https://github.com/piddnad/DDColo

    RSFNet: A White-Box Image Retouching Approach using Region-Specific Color Filters

    Full text link
    Retouching images is an essential aspect of enhancing the visual appeal of photos. Although users often share common aesthetic preferences, their retouching methods may vary based on their individual preferences. Therefore, there is a need for white-box approaches that produce satisfying results and enable users to conveniently edit their images simultaneously. Recent white-box retouching methods rely on cascaded global filters that provide image-level filter arguments but cannot perform fine-grained retouching. In contrast, colorists typically employ a divide-and-conquer approach, performing a series of region-specific fine-grained enhancements when using traditional tools like Davinci Resolve. We draw on this insight to develop a white-box framework for photo retouching using parallel region-specific filters, called RSFNet. Our model generates filter arguments (e.g., saturation, contrast, hue) and attention maps of regions for each filter simultaneously. Instead of cascading filters, RSFNet employs linear summations of filters, allowing for a more diverse range of filter classes that can be trained more easily. Our experiments demonstrate that RSFNet achieves state-of-the-art results, offering satisfying aesthetic appeal and increased user convenience for editable white-box retouching.Comment: Accepted by ICCV 202

    Feature-Rich Audio Model Inversion for Data-Free Knowledge Distillation Towards General Sound Classification

    Full text link
    Data-Free Knowledge Distillation (DFKD) has recently attracted growing attention in the academic community, especially with major breakthroughs in computer vision. Despite promising results, the technique has not been well applied to audio and signal processing. Due to the variable duration of audio signals, it has its own unique way of modeling. In this work, we propose feature-rich audio model inversion (FRAMI), a data-free knowledge distillation framework for general sound classification tasks. It first generates high-quality and feature-rich Mel-spectrograms through a feature-invariant contrastive loss. Then, the hidden states before and after the statistics pooling layer are reused when knowledge distillation is performed on these feature-rich samples. Experimental results on the Urbansound8k, ESC-50, and audioMNIST datasets demonstrate that FRAMI can generate feature-rich samples. Meanwhile, the accuracy of the student model is further improved by reusing the hidden state and significantly outperforms the baseline method.Comment: Accepted by ICASSP 2023. International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023

    A Bayesian Optimal Design for Accelerated Degradation Testing Based on the Inverse Gaussian Process

    Get PDF
    Accelerated degradation testing (ADT) is commonly used to obtain degradation data of products by exerting loads over usage conditions. Such data can be used for estimating component lifetime and reliability under usage conditions. The design of ADT entails to establish a model of the degradation process and define the test plan to satisfy given criteria under the constraint of limited test resources. Bayesian optimal design is a method of decision theory under uncertainty, which uses historical data and expert information to find the optimal test plan. Different expected utility functions can be selected as objectives. This paper presents a method for Bayesian optimal design of ADT, based on the inverse Gaussian process and considering three objectives for the optimization: Relative entropy, quadratic loss function, and Bayesian D-optimality. The Markov chain Monte Carlo and the surface fitting methods are used to obtain the optimal plan. By sensitivity analysis and a proposed efficiency factor, the Bayesian D-optimality is identified as the most robust and appropriate objective for Bayesian optimization of ADT

    WordArt Designer: User-Driven Artistic Typography Synthesis using Large Language Models

    Full text link
    This paper introduces WordArt Designer, a user-driven framework for artistic typography synthesis, relying on the Large Language Model (LLM). The system incorporates four key modules: the LLM Engine, SemTypo, StyTypo, and TexTypo modules. 1) The LLM Engine, empowered by the LLM (e.g., GPT-3.5), interprets user inputs and generates actionable prompts for the other modules, thereby transforming abstract concepts into tangible designs. 2) The SemTypo module optimizes font designs using semantic concepts, striking a balance between artistic transformation and readability. 3) Building on the semantic layout provided by the SemTypo module, the StyTypo module creates smooth, refined images. 4) The TexTypo module further enhances the design's aesthetics through texture rendering, enabling the generation of inventive textured fonts. Notably, WordArt Designer highlights the fusion of generative AI with artistic typography. Experience its capabilities on ModelScope: https://www.modelscope.cn/studios/WordArt/WordArt.Comment: Accepted by EMNLP 2023, 10 pages, 11 figures, 1 table, the system is at https://www.modelscope.cn/studios/WordArt/WordAr

    Exploring the mechanism of aloe-emodin in the treatment of liver cancer through network pharmacology and cell experiments

    Get PDF
    Objective: Aloe-emodin (AE) is an anthraquinone compound extracted from the rhizome of the natural plant rhubarb. Initially, it was shown that AE exerts an anti-inflammatory effect. Further studies revealed its antitumor activity against various types of cancer. However, the mechanisms underlying these properties remain unclear. Based on network pharmacology and molecular docking, this study investigated the molecular mechanism of AE in the treatment of hepatocellular carcinoma (HCC), and evaluated its therapeutic effect through in vitro experiments.Methods: CTD, Pharmmapper, SuperPred and TargetNet were the databases to obtain potential drug-related targets. DisGenet, GeneCards, OMIM and TTD were used to identify potential disease-related targets. Intersection genes for drugs and diseases were obtained through the Venn diagram. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersecting genes were conducted by the website of Bioinformatics. Intersection genes were introduced into STRING to construct a protein-protein interaction network, while the Cytoscape3.9.1 software was used to visualize and analyze the core targets. AutoDock4.2.6 was utilized to achieve molecular docking between drug and core targets. In vitro experiments investigated the therapeutic effects and related mechanisms of AE.Results: 63 overlapped genes were obtained and GO analysis generated 3,646 entries by these 63 intersecting genes. KEGG analysis mainly involved apoptosis, proteoglycans in cancer, TNF signaling pathway, TP53 signaling pathway, PI3K-AKT signaling pathway, etc. AKT1, EGFR, ESR1, TP53, and SRC have been identified as core targets because the binding energies of them between aloe-emodin were less than -5 kcal/Mol.The mRNA and protein expression, prognosis, mutation status, and immune infiltration related to core targets were further revealed. The involvement of AKT1 and EGFR, as well as the key target of the PI3K-AKT signaling pathway, indicated the importance of this signaling pathway in the treatment of HCC using AE. The results of the Cell Counting Kit-8 assay and flow analysis demonstrated the therapeutic effect of AE. The downregulation of EGFR, PI3KR1, AKT1, and BCL2 in mRNA expression and PI3KR1, AKT,p-AKT in protein expression confirmed our hypothesis.Conclusion: Based on network pharmacology and molecular docking, our study initially showed that AE exerted a therapeutic effect on HCC by modulating multiple signaling pathways. Various analyses confirmed the antiproliferative activity and pro-apoptotic effect of AE on HCC through the PI3K-AKT signaling pathway. This study revealed the therapeutic mechanism of AE in the treatment of HCC through a novel approach, providing a theoretical basis for the clinical application of AE

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore