1,242 research outputs found
California Should Lead the Nation in Controlling Agricultural Pollution
Agricultural runoff is one of the largest sources of pollution in the nation’s waterways. In recent years, scientific journals and the media have been filled with reports of toxic algae blooms and dead zones near and far: The Everglades, Great Lakes, Gulf of Mexico, Chesapeake Bay, and San Francisco Bay-Delta. Agricultural pollution also threatens public health in communities that rely on tainted groundwater. In California alone, more than a quarter million residents in largely agricultural areas are served by water systems with degraded groundwater quality
Detection of pulse trains in the electrically stimulated cochlea: Effects of cochlear health
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98659/1/JAS003954.pd
Association of Adherence to a Healthy Diet with Cognitive Decline in European and American Older Adults
Aim: To examine the association between a healthy diet, assessed by the Healthy Diet Indicator (HDI), and cognitive decline in older adults.
Methods: Data from 21,837 participants aged ≥ 55 years from 3 cohorts (Survey in Europe on Nutrition and the Elderly, a Concerted Action[SENECA], Rotterdam Study [RS], Nurses’ Health Study [NHS]) were analyzed. HDI scores were based on intakes of saturated fatty acids, polyunsaturated fatty acids, mono- and disaccharides, protein, cholesterol, fruits and vegetables, and fiber. The Telephone Interview for Cognitive Status in NHS and Mini-Mental State Examination in RS and SENECA were used to assess cognitive function from multiple repeated measures. Using multivariable-adjusted, mixed linear regression, mean differences in annual rates of cognitive decline by HDI quintiles were estimated.
Results: Multivariable-adjusted differences in rates in the highest versus the lowest HDI quintile were 0.01 (95% CI –0.01, 0.02) in NHS, 0.00 (95% CI –0.02, 0.01) in RS, and 0.00 (95% CI –0.05, 0.05) in SENECA with a pooled estimate of 0.00 (95% CI –0.01, 0.01), I 2 = 0%.
Conclusions: A higher HDI score was not related to reduced rates of cognitive decline in European and American older adults
Reduced Expression of IFIH1 Is Protective for Type 1 Diabetes
IFIH1 (interferon induced with helicase C domain 1), also known as MDA5 (melanoma differentiation-associated protein 5), is one of a family of intracellular proteins known to recognise viral RNA and mediate the innate immune response. IFIH1 is causal in type 1 diabetes based on the protective associations of four rare variants, where the derived alleles are predicted to reduce gene expression or function. Originally, however, T1D protection was mapped to the common IFIH1 nsSNP, rs1990760 or Thr946Ala. This common amino acid substitution does not cause a loss of function and evidence suggests the protective allele, Ala946, may mark a haplotype with reduced expression of IFIH1 in line with the protection conferred by the four rare loss of function alleles. We have performed allele specific expression analysis that supports this hypothesis: the T1D protective haplotype correlates with reduced IFIH1 transcription in interferon-β stimulated peripheral blood mononuclear cells (overall p = 0.012). In addition, we have used multiflow cytometry analysis and quantitative PCR assays to prove reduced expression of IFIH1 in individuals heterozygous for three of the T1D-associated rare alleles: a premature stop codon, rs35744605 (Glu627X) and predicted splice variants, rs35337543 (IVS8+1) and rs35732034 (IVS14+1). We also show that the nsSNP, Ile923V, does not alter pre-mRNA levels of IFIH1. These results confirm and extend the new autoimmune disease pathway of reduced IFIH1 expression and protein function protecting from T1D
Co-ordinated Role of TLR3, RIG-I and MDA5 in the Innate Response to Rhinovirus in Bronchial Epithelium
The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8–12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases
Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers\u27 tissue of origin
A Genome-Wide Scan of Ashkenazi Jewish Crohn's Disease Suggests Novel Susceptibility Loci
Crohn's disease (CD) is a complex disorder resulting from the interaction of intestinal microbiota with the host immune system in genetically susceptible individuals. The largest meta-analysis of genome-wide association to date identified 71 CD–susceptibility loci in individuals of European ancestry. An important epidemiological feature of CD is that it is 2–4 times more prevalent among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Europeans (NJ). To explore genetic variation associated with CD in AJs, we conducted a genome-wide association study (GWAS) by combining raw genotype data across 10 AJ cohorts consisting of 907 cases and 2,345 controls in the discovery stage, followed up by a replication study in 971 cases and 2,124 controls. We confirmed genome-wide significant associations of 9 known CD loci in AJs and replicated 3 additional loci with strong signal (p<5×10−6). Novel signals detected among AJs were mapped to chromosomes 5q21.1 (rs7705924, combined p = 2×10−8; combined odds ratio OR = 1.48), 2p15 (rs6545946, p = 7×10−9; OR = 1.16), 8q21.11 (rs12677663, p = 2×10−8; OR = 1.15), 10q26.3 (rs10734105, p = 3×10−8; OR = 1.27), and 11q12.1 (rs11229030, p = 8×10−9; OR = 1.15), implicating biologically plausible candidate genes, including RPL7, CPAMD8, PRG2, and PRG3. In all, the 16 replicated and newly discovered loci, in addition to the three coding NOD2 variants, accounted for 11.2% of the total genetic variance for CD risk in the AJ population. This study demonstrates the complementary value of genetic studies in the Ashkenazim
Use of narratives to enhance learning of research ethics in residents and researchers
BACKGROUND: Past didactic pedagogy on biomedical research ethics and informed consent in our program had resulted in passive memorization of information and disengaged learning within psychiatry residents and clinical researchers. The question is how do we better motivate and engage learners within the session. Thus, we incorporated narratives into the learning environment and hypothesised that the use of narratives in the teaching of biomedical research ethics and informed consent would be associated with greater engagement, motivation, understanding, reflective learning and effectiveness of the teaching session. METHODS: The narratives were chosen from the history of research ethics and the humanities literature related to human subject research. Learners were asked to provide post-session feedback through an anonymised questionnaire on their learning session. An outcomes logic model was used for assessment with focus on immediate outcomes such as engagement, motivation, understanding and reflective learning. RESULTS: Overall, 70.5% (N = 273) of the learners responded to the questionnaire. Amongst the respondents, 92.6% (N = 253) of the participants ranked use of narratives as most helpful in appreciating the historical context of research ethics and informed consent in research. The majority felt engaged (89.8%, N = 245), more motivated to learn (77.5%, N = 212) and better equipped (86.4%, N = 236) about the subject matter. Better appreciation of the learning topic, engagement, motivation to learn, equipping were strongly correlated with the promotion of reflective learning, effectiveness of teaching, promotion of critical thinking and overall positive rating of the teaching session on research ethics (all p < 0.001). Multivariate analyses found that the use of narratives was associated with higher overall rating of the teaching session (p = 0.003) and promotion of critical thinking (p = 0.02). CONCLUSION: Results revealed that the use of narratives could enhance engagement, appreciation of biomedical research ethics and informed consent, and address underlying motivational factors behind learning and understanding of research ethics
Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology
The genetic determinants of recurrent somatic mutations in 43,693 blood genomes
Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences
- …