2,542 research outputs found

    Coanalysis of GWAS with eQTLs reveals disease-tissue associations.

    Get PDF
    Expression quantitative trait loci (eQTL), or genetic variants associated with changes in gene expression, have the potential to assist in interpreting results of genome-wide association studies (GWAS). eQTLs also have varying degrees of tissue specificity. By correlating the statistical significance of eQTLs mapped in various tissue types to their odds ratios reported in a large GWAS by the Wellcome Trust Case Control Consortium (WTCCC), we discovered that there is a significant association between diseases studied genetically and their relevant tissues. This suggests that eQTL data sets can be used to determine tissues that play a role in the pathogenesis of a disease, thereby highlighting these tissue types for further post-GWAS functional studies

    Single-cell western blotting.

    Get PDF
    To measure cell-to-cell variation in protein-mediated functions, we developed an approach to conduct ∼10(3) concurrent single-cell western blots (scWesterns) in ∼4 h. A microscope slide supporting a 30-μm-thick photoactive polyacrylamide gel enables western blotting: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins and antibody probing. We applied this scWestern method to monitor single-cell differentiation of rat neural stem cells and responses to mitogen stimulation. The scWestern quantified target proteins even with off-target antibody binding, multiplexed to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supported analyses of low starting cell numbers (∼200) when integrated with FACS. The scWestern overcomes limitations of antibody fidelity and sensitivity in other single-cell protein analysis methods and constitutes a versatile tool for the study of complex cell populations at single-cell resolution

    Advancing On-Orbit Assembly With ISAR

    Get PDF
    The U.S. Naval Academy (USNA) is looking to advance autonomous assembly with a next-generation Intelligent Space Assembly Robot (ISAR) system, which seeks to demonstrate semi-autonomous robotic assembly capabilities on orbit. ISAR is a small size form, low cost, 3U CubeSat-class satellite intending to mature robotic assembly capabilities. It is comprised of two key subsystems: twin 60 cm seven degree of freedom robotic arms, RSat, and the sensors which utilize one 3D camera and two 2D cameras to increase spatial awareness and aid real-time responsible maneuvering in a dynamic space environment. RSat, developed by the Naval Academy, is an existing set of robotic arms housed in a 3U CubeSat. RSat serves as the foundation for the next-generation ISAR program and will be launched as a free-flyer mission in 2018 as part of NASA\u27s ElaNa XIX launch. On-orbit demonstrations of ISAR will test the ability to perform a test structure assembly with robotic arm actuation at a fraction of size and cost of previous space robotic platforms. This paper will present an overview of the ISAR system, outline design, operation, and demonstration modifications for the on orbit experiment and present a novel concept for autonomous operations

    Direct evidence for the emergence of a pressure induced nodal superconducting gap in the iron-based superconductor Ba_0.65Rb_0.35Fe_2As_2

    Get PDF
    Identifying the superconducting (SC) gap structure of the iron-based high-temperature superconductors (Fe-HTS's) remains a key issue for the understanding of superconductivity in these materials. In contrast to other unconventional superconductors, in the Fe-HTS's both dd-wave and extended s-wave pairing symmetries are close in energy, with the latter believed to be generally favored over the former. Probing the proximity between these very different SC states and identifying experimental parameters that can tune them, are of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth (lambda) in the optimally doped Fe-HTS Ba_0.65Rb_0.35Fe_2As_2. At ambient pressure this material is known to be a nodeless s-wave superconductor. Upon pressure a strong decrease of (lambda) is observed, while the SC transition temperature remains nearly constant. More importantly, the low-temperature behavior of (1/lambda^{2}) changes from exponential saturation at zero pressure to a power-law with increasing pressure, providing unambiguous evidence that hydrostatic pressure promotes nodal SC gaps. Comparison to microscopic models favors a d-wave over a nodal s^{+-}-wave pairing as the origin of the nodes. Our results provide a new route of understanding the complex topology of the SC gap in Fe-HTS's.Comment: 33 pages and 12 figures (including supplementary information

    Forgery-aware Adaptive Vision Transformer for Face Forgery Detection

    Full text link
    With the advancement in face manipulation technologies, the importance of face forgery detection in protecting authentication integrity becomes increasingly evident. Previous Vision Transformer (ViT)-based detectors have demonstrated subpar performance in cross-database evaluations, primarily because fully fine-tuning with limited Deepfake data often leads to forgetting pre-trained knowledge and over-fitting to data-specific ones. To circumvent these issues, we propose a novel Forgery-aware Adaptive Vision Transformer (FA-ViT). In FA-ViT, the vanilla ViT's parameters are frozen to preserve its pre-trained knowledge, while two specially designed components, the Local-aware Forgery Injector (LFI) and the Global-aware Forgery Adaptor (GFA), are employed to adapt forgery-related knowledge. our proposed FA-ViT effectively combines these two different types of knowledge to form the general forgery features for detecting Deepfakes. Specifically, LFI captures local discriminative information and incorporates these information into ViT via Neighborhood-Preserving Cross Attention (NPCA). Simultaneously, GFA learns adaptive knowledge in the self-attention layer, bridging the gap between the two different domain. Furthermore, we design a novel Single Domain Pairwise Learning (SDPL) to facilitate fine-grained information learning in FA-ViT. The extensive experiments demonstrate that our FA-ViT achieves state-of-the-art performance in cross-dataset evaluation and cross-manipulation scenarios, and improves the robustness against unseen perturbations

    Detection of orbital and superhump periods in Nova V2574 Ophiuchi (2004)

    Full text link
    We present the results of 37 nights of CCD unfiltered photometry of nova V2574 Oph (2004) from 2004 and 2005. We find two periods of 0.14164 d (~3.40 h) and 0.14773 d (~3.55 h) in the 2005 data. The 2004 data show variability on a similar timescale, but no coherent periodicity was found. We suggest that the longer periodicity is the orbital period of the underlying binary system and that the shorter period represents a negative superhump. The 3.40 h period is about 4% shorter than the orbital period and obeys the relation between superhump period deficit and binary period. The detection of superhumps in the light curve is evidence of the presence of a precessing accretion disk in this binary system shortly after the nova outburst. From the maximum magnitude - rate of decline relation, we estimate the decay rate t_2 = 17+/-4 d and a maximum absolute visual magnitude of M_Vmax = -7.7+/-1.7 mag.Comment: 6 pages, 6 figures, 2 .sty files, AJ accepted, minor change to one of reference
    • …
    corecore